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Super-resolution problem is posed as an inverse deconvolution problem. Fast non-

iterative super-resolution algorithm based on this approach is suggested. 

 

Introduction 

The problem of super-resolution (SR) is to 

recover a high-resolution image from a set of 

several degraded low-resolution images. This 

problem is very helpful in human surveillance, 

biometrics, etc. because it can significantly 

improve image quality. 

There are two groups of video SR algorithms: 

learning- and reconstruction-based. Learning-

based algorithms enhance the resolution of a 

single image using information on the 

correspondence of sample low- and high-

resolution images. Reconstruction-based 

algorithms use only a set of low-resolution 

images to construct high-resolution image. 

More detailed introduction into video SR 

problems is given in [1], [2]. 

The majority of reconstruction-based 

algorithms use camera models [3] for 

downsampling the high-resolution image. The 

problem is posed as error minimization 

problem 
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where z  is reconstructed high-resolution 

image, kw  is k-th low-resolution image, kA  is 

a downsampling operator which transforms 

high-resolution image into k-th low-resolution 

image, 
2

  is standard Euclidian norm. The 

operator can be  generally represented as 

nzHFDHzA atmkcamk  , where atmH  is 

atmosphere turbulence effect which is often 

neglected, kF  is a warping operator like 

motion blur or motion deformation, camH  is 

camera lens blur which is usually modeled by 

Gauss filter, D  is a decimation operator, n  is 

a noise which is usually ignored. For 

computational purposes, we exchange 

H = camH and kF and use  

HzDFzA kk  . (2) 

Warping operator kF  can be calculated, for 

example, using motion calculation at base 

points and interpolation at other points [4], [5]. 

Variational optical flow estimation approaches 

are also widely used [6], [7], [8], [9]. 

Problem definition 

Since z  is defined on a discrete set, but pixel 

coordinates ),(),( ** yxFyx k  do not always 

belong to the grid, operator H  is used both for 

filtering and interpolation: 
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where ),( ji yx  are grid points,   is chosen in 

accordance with scale factor s . We use 

s4.0 . Operator D  simply rescales the 

coordinates. 

Operator zAv kk   (2) takes the form 
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where ),( ji yx  are grid points, 

),(),( ,, jik

k

ji

k

ji sysxFyx  . The super-resolution 

problem (1) takes the form 
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By changing multiple indexes with single 

index, the formula (5) can be rewritten as 
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The problem (6) is ill-posed, so regularization 

methods [10] are used: 
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Iterative method for solving (7) is discussed in 

[2]. In this paper, a non-iterative algorithm for 

solving (6) is proposed. 

Deconvolution 

We consider the problem of deconvolution on 

a discrete 1D set }:{ ihxx ii   and the case 

of Gauss filter G  
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The convolution looks as 

GzHzy  , 

 
j

jiji Gzy . (9) 

The problem of deconvolution is to reconstruct 

z  from given convolution result Hz  

yHz 1 . (10) 

Inverse operator 1H  can be constructed using 

Fourier transform: Gzy ˆˆˆ  , Gyz ˆ/ˆˆ  , and z  

can be found as a convolution of y  with 

inverse Fourier transform of Ĝ/1 . Operator 
1H  is unbounded. In the case of noisy data it 

significantly amplifies noise. To avoid this, we 

use a finite adaptive filter 

Cyz  , 
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Coefficients jc  in (11) are chosen to minimize 

2
Cyz  . Filter length k  is chosen in a way 

to make deconvolution fast, but precise 

enough. We use 3k . 

In two-dimensional case, we process 

consequently the rows and the columns of the 

image. 

For given super-resolution problem (1), we 

convolve low-resolution images with Gauss 

filter and calculate coefficients jc  from a 

given set of images. We seek for 
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Experiments have shown that adaptive filter 

(11) does not significantly amplify noise. It 

depends on given images. If the images are 

noisy, then filter coefficients are smoothed and 

noise level does not significantly increase after 

deconvolution. This also means that 

regularization term (7) is not necessary due to 

adaptive filter (11) is automatically tuned to 

noise level. 

We have compared adaptive filter with 

unsharp mask GyGyyz  )( . 

Unsharp mask shows practically the same 

results, but it takes more time to estimate its 

parameters ),(  . 

 Problem solution 

If the points ),( nn yx  in (6) are grid points, 

then deconvolution method using adaptive 

filter can be used. But in general case 

coordinates nn yx ,  are not discrete. So, the 

algorithm becomes as follows: 

1. Estimate the values of Hz  at all grid points 

),( ji yx . 

2. Perform deconvolution using adaptive filter. 

To estimate the values of Hz  at grid points, 

we use Gauss interpolation (3) with a small 

enough radius, so it does not significantly 

influences deconvolution. 

In Figure 1, a result of the proposed super-

resolution method is compared with other 

image resampling and super-resolution 

methods. 

  
a) One of the input images 

interpolated using nearest 

neighbor method 

b) Regularization-based 

super-resolution [2] 
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c) The proposed super-

resolution method (6) 

e) Regularization-based 

image interpolation [11] 

Fig. 1. Super-resolution results using 4 input images and 

scale factor s=4. 

Problem discussion 

Super-resolution method (6) shows very good 

results if the warping operator kF  is calculated 

precisely. If it has errors, the solution becomes 

unstable. To avoid this, we can formulate 

super-resolution problem (1) in another way: 
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We make single-image super-resolution for 

every image and then calculate an average 

image. 

Using the approach (13) results in blurred 

image, but without artifacts caused by the 

inaccuracy in warping operator determining. 

An example of the comparison of the 

approaches is shown in Figure 2. 

  
a) The proposed super-

resolution method (6) 

b) Super-resolution for 

unstable data (13) 

Fig. 2. Super-resolution results for 4 input images and 

factor s=4 for inaccurately defined warping operator. 

Conclusion 

Fast non-iterative method for image super-

resolution has been suggested. The method 

shows very good results if the warping 

operator is accurately estimated like in the 

case of only sub-pixel shifts in the initial 

image set. Hybrid method to suppress the 

problems of warping operator inaccurate 

determining is under work. 
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