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Abstract

Deinterlacing is the process of converting of interlaced-scan video
sequences into progressive scan format. It involves interpolating
missing lines of video data. This paper presents a new algorithm
of spatial interpolation that can be used as a part of more com-
plex motion-adaptive or motion-compensated deinterlacing. It is
based on edge-directional interpolation, but adds several features
to improve quality and robustness: spatial averaging of directional
derivatives, ”soft” mixing of interpolation directions, and use of
several interpolation iterations. High quality of the proposed algo-
rithm is demonstrated by visual comparison and PSNR measure-
ments.

Keywords: deinterlacing, edge-directional interpolation, intra-
field interpolation.

1 INTRODUCTION

Interlaced scan (or interlacing) is a technique invented in 1930-ies
to improve smoothness of motion in video without increasing the
bandwidth. It separates a video frame into 2 fields consisting of
odd and even raster lines. Fields are updated on a screen in alter-
nating manner, which permits updating them twice as fast as when
progressive scan is used, allowing capturing motion twice as often.
Interlaced scan is still used in most television systems, including
certain HDTV broadcast standards.

However, many television and computer displays nowadays are
based on LCD or plasma technologies. They cannot benefit from
interlacing, as they are not using a raster scan to form an image. To
display video on such systems, it has to be converted to progressive
scan format. This process is known as deinterlacing.

In old-style CRT television displays, ”deinterlacing” is performed
by the viewer’s vision smoothing properties. To achieve better dis-
play quality for the same video material on modern LCD or 100 Hz
displays, deinterlacing should be performed in hardware.

Converting interlaced video to progressive-scan video requires in-
terpolating a set of missing lines in every video field. Two trivial
approaches exist in deinterlacing: ”Bob” method interpolates ev-
ery missing line by averaging 2 adjacent lines in the same field;
”weave” method inserts missing lines from the previous field (that
has a complementary parity). Problems with such simple methods
are obvious: ”Bob” reduces vertical resolution of video, produces
jagged edges, and suffers from flickering effect due to alternation of
interpolated lines of different parity (Fig. 1a). ”Weave” produces a
temporal mismatch of 2 fields combined in a single frame, resulting
in ”comb” (or ”tearing”) artifacts on moving objects (Fig. 1b).

More advanced methods include motion-adaptive and motion-
compensated deinterlacing [1]. Motion-adaptive methods detect
presence of motion in video sequence and use temporal interpola-
tion (”weave”) in still areas to retain full vertical resolution whereas
a spatial interpolation (e.g. ”Bob”) is used near moving objects to
prevent comb artifacts. Motion-compensated methods track the di-
rection and speed of moving objects to interpolate missing lines in
3D spatiotemporal space. Since true motion data is usually unavail-
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Figure 1: a: ”Bob” deinterlacing (line averaging),
b: ”weave” deinterlacing (field insertion).

able, it is estimated from the video sequence.

In this paper, a new high-quality method of spatial interpolation
of video frames in suggested. It is based on widely known ELA
(edge-based line averaging) [2] methods, but introduces several im-
provements resulting in higher image quality and better robustness:

• spatial averaging of directional derivatives;

• ”soft” mixing of interpolation directions;

• use of several interpolation iterations with re-estimation of
derivatives from a full-resolution frame.

This interpolation method can be used as a part of motion-adaptive
or motion-compensated deinterlacing methods.

The rest of the paper is organized as follows. In Section 2, the
prior art is reviewed and basic spatial interpolation algorithms are
explained. In Section 3, the proposed algorithm is described. Sec-
tion 4 shows image examples and PSNR figures for the proposed
algorithm. Section 5 concludes the paper.

2 PRIOR ART

The simplest methods of spatial interpolation (”Bob”) just duplicate
lines of the field to fill in the missing lines or perform linear (or cu-
bic) averaging of 2 (or 4) nearest pixels. This often results in an
artifact known as jagged edges (Fig. 1a) and it is especially notice-
able where vertical direction of interpolation doesn’t match with
local direction of edges. A well-known solution to the problem
of jagged edges is edge-directional interpolation methods. Such
methods estimate the local edge direction and apply interpolation
along this direction.

A simple edge-directional interpolation for deinterlacing is known



as ELA (edge-based line averaging) [2]. It calculates 3 or 5 direc-
tional derivatives of the image around the central pixel (Fig. 2). For
color images, all 3 color channels can be differenced and their dif-
ferences being added for coherent interpolation across color chan-
nels.

Dd = |Ix+d,y−1 + Ix−d,y+1| (1)

Here d ∈ [−2, 2] is the direction of differencing. The direction of
the least absolute derivative is chosen as the local edge direction,
and interpolation is performed by averaging 2 pixel values along
this direction.
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Figure 2: Aperture of 5-directional ELA method.

One of the problems with this approach is the lack of robustness
in presence of thin lines. When a directional derivative is evalu-
ated across a thin line, it can take a low value if image to the both
sides of the line has the same color (Fig. 3b). This may lead to
erroneous decision on the direction of interpolation and produce
artifacts (Fig. 6a, 7b).

?

Figure 3: Uncertainty of interpolation direction in ELA method.

Another method known as EDDI (edge-dependent deinterlac-
ing) [3] processes a video field with a combination of a high-pass
and low-pass filters to produce the edge mask. The analysis of edge
mask zero crossings in adjacent lines leads to the estimate of the
local edge orientation. This orientation is used for interpolation.

Several adaptations of conventional image interpolation methods to
the problem of deinterlacing are discussed in [4].

3 THE PROPOSED ALGORITHM

A set of modifications to the ELA algorithm is proposed in this
paper, which significantly improves its quality and robustness to
noisy or complex video data.

3.1 Interpolation aperture

The first modification extends the number of interpolation direc-
tions from 3 or 5 to 17 (this number can be an algorithm qual-
ity parameter). Consideration of high number of directions allows

for smooth interpolation of edges that are very close to horizontal
(Fig. 4). However, consideration of directional derivatives between
points that are up to 16 pixels apart can lead to errors similar to
errors of ELA in presence of thin lines.
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Figure 4: Aperture of the proposed method
(only 2 of 17 possible interpolation directions are shown).

3.2 Use of full-resolution image

Two modifications are made to improve the robustness of the in-
terpolation of near-horizontal edges. The first one suggests calcu-
lating directional derivatives from an interpolated frame instead of
the original field. This requires having some initial estimate of the
interpolated frame, which can be obtained by a simple line averag-
ing (linear or cubic). When the pre-interpolated frame is available,
directional derivatives can be calculated between its adjacent lines;
this reduces distances between differenced pixels by a factor of 2.

3.3 Averaging of derivatives

The next modification improving the robustness of interpolation is
spatial averaging (smoothing) of directional derivatives. It is pro-
posed to increase the radius of such averaging as the distance be-
tween differenced pixels increases. The rationale for this decision is
that differencing of distant pixels is more prone to the ”problem of
thin lines”, and thus requires more averaging to ensure that no lines
of the opposite direction are crossing the interpolated area. Such a
spatial averaging can be effectively performed by a box or triangu-
lar filter. A higher-quality alternative is the use of smoother Hann
filter [5]. The suggested filter radius depends on the differencing
direction d, −8 ≤ d ≤ 8 as follows:

R(d) = round (a+ b|d|γ) (2)

The constants used in the preferred implementation are a = 0.6,
b = 0.8, γ = 3/2.

3.4 Interpolation

When the derivatives are spatially averaged, interpolation weights
for each of 17 interpolation directions are calculated as

Wd = k

(
Md

max{0.01, Dd}

)8

(3)

Here k is the normalizing constant to ensure
∑8

d=−8
Wd = 1, Md

is the set of constant weights for biasing the algorithm toward more
cautious interpolation in directions close to horizontal, Dd is the
smoothed directional derivative along direction d. In the preferred
implementation, Md are calculated as follows:

Md = exp (−c |d|) (4)

Here c is the parameter adjusting the bias toward vertical or hori-
zontal directions, in the preferred implementation c = 0.12.

After interpolation weights are calculated, the interpolation is per-
formed as follows:



Ix,y =

8∑
d=−8

0.5Wd (Ix+d,y−1 + Ix−d,y+1) (5)

In this way, ”hard” switching of interpolation directions is replaced
with a ”soft” decision. This helps interpolating edges with interme-
diate slopes between fixed interpolation directions. For example,
for the edge in Fig. 3, the resulting interpolation direction will be a
mixture of d = 0 (larger weight) and d = 1 (smaller weight), with
other weights being close to zero.

3.5 EM algorithm

The next modification is improving the interpolation quality by it-
erating the algorithm after the first interpolation is done. Since the
first iteration estimates directional derivatives from the roughly in-
terpolated image, these derivatives are not accurate, which leads to
a sub-optimal interpolation result. Re-estimating directional deriva-
tives after the first iteration of interpolation provides a better esti-
mate of directional derivatives of a full-resolution image, and this
leads to improved interpolation quality after next iterations, accord-
ing to Expectation Maximization (EM) strategy. In the proposed
implementation, 2 iterations have provided good quality, with only
little change after additional iterations.

The overall conceptual work flow of the algorithm is presented in
Fig. 5.
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Figure 5: Flowchart of the proposed algorithm.

3.6 Optimization of complexity

The computational complexity of the proposed algorithm is signif-
icantly higher than of most prior art methods: on a 2 GHz Pentium
machine it achieves 3 fps processing speed for CIF video. However
several optimizations are possible.

Firstly, interpolation stage can be simplified to selecting only one
most probable interpolation direction instead of mixing interpola-
tion along all directions with different weights.

Another optimization possibility comes from the fact that calcula-
tion of directional derivatives followed by a box-filter averaging is
equivalent to a well-known block matching algorithm, which can
be effectively implemented in hardware.

Finally, it can be noted that in most cases interpolation weights are
spatially smooth. This allows for sparse recalculation of interpola-
tion weights, depending on the smoothing filter radius.

4 RESULTS

Evaluation of visual quality of the proposed algorithm in compari-
son to other existing methods has been performed on various video
test sequences. In addition to published and referenced interpo-
lation algorithms, several commercially available programs have
been evaluated. In Fig. 6, 7, a visual comparison of resulting im-
ages is given for a few methods. More comparisons and sample
images are available in [6].
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Figure 6: a: ELA 5 method, b: Proposed method.

It can be seen that a simple non-adaptive line averaging produces
noticeable jagged edges on flag stripes, but works well on small
objects, like stars (Fig. 7). Simple edge-directional method ELA 5
fails to correctly resolve true edge direction in many cases, which
leads to spurious interpolated pixels near fine details and thin lines
(poster text, tennis table and net in Fig. 6). The result of EDDI
looks much better with only few erroneous pixels at thin lines. The
result of the proposed method shows no visible artifacts.

A formal PSNR evaluation has also been performed on a set of 8
popular test images that were artificially interlaced. Fig. 8 shows
that ELA 3 and ELA 5 methods have a worse PSNR performance
than line averaging due to incorrectly resolved edge directions.
However EDDI method and the proposed algorithm have better per-
formance. The proposed algorithm provides up to 2 dB improve-
ment over the line averaging method, depending on image com-
plexity and presence of fine details.
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Figure 7: a: Line averaging, b: ELA 5 method,
c: EDDI method, d: Proposed method.

5 CONCLUSION

The described algorithm for intra-field interpolation shows good re-
sults in video deinterlacing. Spatial averaging of directional deriva-
tives and mixing of different interpolation directions allow achiev-
ing high-quality interpolation of near-horizontal edges, and at the
same time preventing spurious pixel artifacts that are common to
other methods. Demonstrated visual improvement on real-world
interlaced video sequences is supported by PSNR improvement on
artificially interlaced images. The proposed spatial interpolation
algorithm is used as a part of a motion-compensated video deinter-
lacing method.
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Figure 8: PSNR plot for a set of test images,
referenced to the line averaging method.
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