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Abstract— Motion blur is visible whenever the shutter speed of a camera is slow compared 

to the speed of unintended camera motion. General motion blur is a very complex type of blurring, 

and state-of-the-art blind image deconvolution methods rarely produce adequate results due to the ill-

posed nature of the problem. Even modern deep-learning algorithms sometimes fail at the task. 

Modern deblurring approaches typically use a series of noisy images with shorter exposure 

time for the reconstruction of a high quality image. However, even with a shorter exposure time some 

blurring still remains. The good news is that, with little time for the motion vector to change direction 

significantly, this particular type of motion blur is much easier to model. 

The crucial stage in any deblurring process is the estimation of blur parameters. In this article 

we present a patch-based linear approximation to motion blur with the focus on effective estimation 

of the direction of linear blur. We use a CNN model for estimating the parameters of a linear blur 

kernel for each 32x32-pixel patch of an image and calculating a confidence value for each patch. 
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INTRODUCTION 

Photographs obtained with handheld cameras represent a significant category of digital 

images. The resolution of an image is measured in megapixels, which influences the amount of details 

that can be captured in an image, but a higher megapixel count doesn’t always equate to a better 

picture. The amount of noise is directly related to the overall amount of light captured in an image, 

and the factor that contributes a lot to image quality is the size of the camera's sensor. 

A sure way to increase the amount of light the sensor receives is prolonging the exposure 

time, but that inevitably leads to blurring from even the slightest motions of a camera. Especially in 

low-light conditions, it is impossible to acquire both sharp and noise-free images using hand-held 

cameras. 

Reconstructing a sharp image from a blurry one is an ill-posed problem, with various 

additional constraints used to regularize the solution. While numerous blind deconvolution 

algorithms have shown decent performance in certain cases [1, 2], they typically do not perform well 

in more complex yet common scenarios such as images with strong motion blur. 

Some modern approaches for image enhancement are based on reconstructing a high-quality 

image from a series of images. For example, the algorithm [3] utilizes a pair of images that can be 

easily acquired in low-light conditions: a blurred image taken with low shutter speed and low ISO 

value, and a noisy image captured with high shutter speed and high ISO value. Both images are sliced 

into patches, and the authors extend the Gaussian mixture model to model the underlying intensity 

distribution of each patch using the corresponding patches in the noisy image. 

The algorithm [4] makes use of natural hand tremor, which is typical in hand-held 

photography, to acquire a burst of raw frames. These frames are then aligned and merged to form a 

single image. 

The increase of the resolution of modern hand-held cameras makes the blur more prominent, 

and even with a shorter exposure time some blurring still remains. This supports the demand for high-

quality image deblurring algorithms. During a short exposure, there is little time for the motion vector 

to change direction, so the motion blur can be approximated with linear blur, which is much easier to 

model. 



Many state-of-the-art deblurring algorithms are based on the deep learning approach [5]. In 

[6], a neural network is trained to estimate a set of image-adaptive basis motion kernels with weight 

coefficients for each pixel, which produces a per-pixel motion blur field.  

Gong et al. [7] use a Fully Convolutional Network (FCN) for the estimation of a dense linear 

motion flow parameterized by the horizontal and vertical components. For FCN training they 

generate synthetic pairs of blurred images and corresponding motion flow. 

Sun et al. [8] consider a set of pre-defined linear motion kernels parameterized by their lengths 

and orientations. They split the image into patches and use a CNN to predict probabilistic distribution 

of the kernel parameters for each patch. The sparse patch-level distribution is then converted to a 

dense motion field using a Markov random field that ensures its smoothness. 

The existing deep learning solutions to image deblurring usually present a pipeline with an 

image at the input and an enhanced image at the output, yet there are cases when some parts of an 

image remain blurry. This commonly happens due to inaccurate estimation of the blur parameters as 

the neural network solves the problem as a whole and does not provide the capability to control the 

parameters of the blur. 

It is our belief that refining the parameters of the deblurring process warrants improvement 

of the overall performance of existing algorithms. We dedicate our research to the assessment of the 

non-uniform linear motion blur instead of developing yet another deblurring pipeline. In this article 

we focus on the estimation of the direction of linear blur. 

 

LINEAR BLUR MODEL 

We use the model of a linear blur kernel with direction 𝜃 and length l in the following form, 

with the examples shown in Fig.1: 

 ℎ[𝜃, 𝑙](𝑥, 𝑦) = ℎ[𝑙](𝑥cos𝜃 + 𝑦sin𝜃,−𝑥sin𝜃 + 𝑦cos𝜃), 
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Here ℎ[𝑙] is the linear blur kernel along x-axis with the length 𝑙 and 𝐺σ is Gaussian filter 

kernel which is used to prevent aliasing, we use σ = 0.3. 

 

Fig. 1. Examples of linear blur kernels with different parameters. 

 

CNN MODEL 

In our work we split the images into patches and develop an algorithm that infers the 

parameters of the linear motion blur for each patch. The resulting sparse motion vector field can be 

interpolated to a dense motion vector field using various methods: simple averaging [9], fine-tuning 

[10] or more sophisticated methods like Markov random field for ensuring the motion smoothness 

[8]. 

We use a convolution neural network (CNN) to solve the problem of assessing the parameters 

of linear blur (the same structure, illustrated in Fig.2, applies to both direction and length of the linear 

blur kernel).  

 

 

Fig. 2. Structure of the proposed CNN for the estimation of the parameters of a linear blur kernel. 



 

We have explored several options for the output of CNN: 

1. Indicator vector. Consider a discrete set of parameters {𝜃𝑖 , 𝑙𝑗}, 𝑖 = 1, … , 𝑁, 𝑗 =

1, … ,𝑀 of linear motion blur, where 𝜃 is the direction of the kernel and l represents 

its length. In this case, CNN output is an indicator vector which characterizes the 

probabilistic distribution of motion kernels [8]. The disadvantage of this approach is 

that different blur kernels may produce similar blurred patches, which would impair 

the learning process. In this case constructing an adequate training dataset becomes 

an overly complicated problem.  

2. Pairs of values {𝜃, 𝑙}. The main problem here is that the direction wraps over 𝜋, which 

cannot be handled by a common CNN model. 

3. A vector {sin2𝜃, cos2𝜃, 𝑙}. Here we calculate sin2𝜃 and cos2𝜃 values instead of the 

direction 𝜃 itself. The values belong to the interval [0, 1] and change smoothly. 

We have observed that synchronous estimation of both direction and length of the linear blur 

kernel fails to produce accurate estimates for the length value since the direction has greater impact 

on the blurred image. 

Further investigation has proven that the most accurate results can be obtained for 

independent estimation of the direction of a linear blur kernel, while the problem of accurate 

estimation of the length still remains open. 

During the follow-up investigation we have observed a higher error rate with directions close 

to 𝜋/4 and 3𝜋/4, when the values of  (sin2𝜃, cos2𝜃) are farthest from both 0 and 1. In order to 

overcome this problem, we have increased the number of values in the output vector {𝑣0, … , 𝑣𝑁−1}: 

 

𝑣𝑛 = sin2 (𝜃 +
𝜋𝑛

𝑁
). 

 

We have compared the distribution of absolute errors for inferred and ground truth blur 

directions from the test part of the training dataset. The histograms are shown in Fig. 3. It can be seen 



that adding two more values (N=4) drastically decreases the amount of patches with absolute error 

greater than 15 degrees. Further increasing N leads to better accuracy. 

We have chosen N=6. 

 

 

Fig. 3. Histograms of erroneously predicted blur directions using CNN models with different 

output vector length N. 

 

In order to find the angle θ from the vector output 𝐯 = {vn} of the CNN, we find θ that 

minimizes 
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The value 𝐹(𝐯, 𝜃) for a given vector 𝐯 can be used as a confidence level: low values 𝐹(𝐯, 𝜃) 

corresponds to blocks that likely contains pronounced motion blur. We eliminate the patches with 

𝐹(𝐯, 𝜃) > 0.02. The threshold has been set experimentally. 

 

DATASET PREPARATION 

For the creation of our dataset we use images from the KonIQ-10k dataset [11] that contains 

about 10 thousand images of diverse content. Each image is split into 32x32-pixel patches with 16-

pixel overlap. From each image we take the top 10% of the patches based on the standard deviation 



in order to exclude flat areas. We apply patch-wise centering, subtracting the mean intensity value 

from each patch.  

We add random impairments to each patch: first, we apply linear blur kernel with random 

parameters (𝜃, 𝑙),  𝜃 ∈ [0, 𝜋],  𝑙 ∈ [0, 10] ; then we add Gaussian noise with random standard 

deviation 𝜎 ∈ [0, 8]. 

The dataset is split randomly into train/test sets with 80%/20% ratio. 

 

EXPERIMENTS AND RESULTS 

We evaluate the proposed method using images with simulated blur corresponding to camera 

movement in the hands. The blur is modeled by translation (dx, dy) and rotation α around image 

center. The parameters (dx, dy, α) are chosen randomly such that the maximal length of motion blur 

does not exceed 𝑙𝑚𝑎𝑥 = 10. 

The results are presented at Fig. 4 and Fig. 5. 

In can be seen that the proposed algorithm produces sparse vector field with reliable motion 

information. Incorporation of the proposed algorithm into the deblurring pipeline in is progress so we 

cannot provide numerical comparison with state-of-the-art motion deblurring algorithms yet. 

Source code and data are available at 

https://imaging.cs.msu.ru/en/research/motiondeblur 

 

  

Fig. 4. An example of sparse motion vector fields produced by the proposed algorithm. 

Images are takes from GOPRO dataset [12]. 

 



   

   

a) Blurred image b) Proposed method c) Carbajal et al. [6] 

Fig. 5. A visual comparison of the proposed method and state-of-the-art algorithm. 

 

CONCLUSIONS 

An algorithm for linear blur parameters estimation using a convolution neural network has 

been proposed. It produces sparse direction field for the motion blur. Interpolation of the sparse field 

into dense field will be part of the future work. 
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