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Abstract 

General methods of image processing, analysis and enhancement and their biomedical applications 

developed by the scientific school of the Laboratory of Mathematical Methods of Image Processing of the 

Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University are 

reviewed. The suggested general methods and algorithms of image quality enhancement for image 

resampling and super-resolution, ringing artifact reduction, image sharpening, image denoising, and image 

registration are described. Image analysis methods based on Hermite projection method, Gauss-Laguerre 

functions and the use of phase information are presented. We describe and review the developed methods 

for medical imaging tasks solution, including problems in histology, color Doppler flow mapping, 

ultrasound liver fibrosis diagnostics, CT brain perfusion, Alzheimer’s disease diagnostics, dermatology, 

chest X-ray image analysis, live cell image registration, tracking, segmentation and synthesis. The paper 

illustrates the basic research idea of the effectiveness of the hybrid approach when we jointly use classical 

mathematical methods and deep learning approaches. 
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1 INTRODUCTION 

The article deals with the most interesting general image processing, analysis and 

enhancement tasks and their applications in biomedicine, which were the subject of research 

at the Laboratory of Mathematical Methods of Image Processing of the Faculty of 

Computational Mathematics and Cybernetics of Lomonosov Moscow State University. The 

methods and algorithms developed by the participants of the school while solving these 

problems are presented. This year the laboratory celebrates its 15th anniversary, but its roots 

go back to the traditions of the scientific school of the outstanding mathematician and founder 

of the Faculty of Computational Mathematics and Cybernetics Andrey N. Tikhonov. 

The structure of the paper is as follows. Section 2 describes the works in image quality 

estimation and enhancement. The tasks of image resampling and different artifacts 

suppression are considered. The problems concerned with the Hermite functions-based 

technique and its application to the different image analysis tasks are presented in Section 3. 

Section 4 presents problems and algorithms in different biomedical applications. A short 

Conclusion ends the article. 

2 IMAGE ENHANCEMENT AND IMAGE QUALITY ESTIMATION 

The objective of image enhancement is to process an image so that the result is more suitable 

than original image for a specific application. This is especially important for biomedical 

applications when it is not possible to acquire images of necessary quality. 
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2.1 Image Resampling and Super-Resolution 

A series of algorithms have been developed for image resolution enhancement. It includes 

both single-frame and multi-frame algorithms. 

2.1.1 Single-frame super-resolution 

For the problem of image resampling, also known as single-frame super-resolution, the 

research was carried out in two directions. In the first direction, a classical mathematical model 

for image resampling was considered. The image resampling problem was posed as an inverse 

problem to the image downscaling model. Tikhonov regularization method with a Total 

Variation stabilizer [56] was used to solve this ill-posed problem: 

𝑧α = argmin
𝑧

(‖𝐴𝑧 − 𝑢‖2
2 + α𝑇𝑉[𝑧]), 

where u is the given low-resolution image, A is the downscaling operator, TV [z] is the 

stabilizer in the form of the total variation functional, and α is the regularization parameter. 

The total variation functional works as the prior knowledge about the image. 

The result heavily depends on the choice of the regularization parameter. In [77], a relation 

between total variation values of corresponding low- and high-resolution images was set, and 

an explicit choice of the regularization parameter was suggested. 

The second direction was based on machine learning approach, particularly on convolutional 

neural networks. Instead of developing new convolutional neural network models, we focused 

on the improvement of existing algorithms. Proper data preparation is as important as a good 

network model. In [68], a way to construct the training dataset for the problem of image 

resampling with noisy input has been proposed. In [46], an application of convolutional neural 

networks for retinal image upscaling was investigated. In [69], it was shown that applying 

Zero Component Analysis helped to achieve better results at edges and textured areas. 
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We have also developed several edge-directional image resampling algorithms with adaptive 

weights that are chosen according to local gradient features, and interpolation kernels that are 

learned using pairs of low- and high-resolution images of the target class [76, 79]. 

2.1.2 Multi-frame super-resolution 

Multi-frame super-resolution is a reconstruction of a single high-resolution image from 

several low-resolution observations. Unlike single-frame super-resolution, the amount of 

available data is much more informative, and there is no need to use the prior information for 

high-resolution image reconstruction. Thus, the classical approach based on the image 

downscaling model is still widely used. It is posed as a set of equations: find a high-resolution 

image that gives the low-resolution observations after applying motion and downsampling 

operators, and it is often formulated as a minimization problem similar to single-image 

resampling: 

𝑧α = argmin
𝑧

(∑‖𝐴𝐹𝑘𝑧 − 𝑢𝑘‖2
2

𝐾

𝑘=1

+ α𝑇𝑉[𝑧]), 

where uk are K input low-resolution images, Fk are corresponding motion operators. 

The most challenging problems become functional minimization and finding motion operators 

Fk which is a mapping between low-resolution images with sub-pixel accuracy (this problem 

is called optical flow estimation). Our research was focused on developing algorithms for 

computationally efficient non-iterative reconstruction from a series of images and video 

sequences. 

In [49], we have addressed a problem of finding optical flow when illumination changes 

between frames. We have proposed a modification of Kanade-Lucas algorithm based on using 

partial derivatives of image intensity. In [50], a non-iterative algorithm was proposed for 
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solving the inverse problem. The idea was to adaptively find an inverse convolution kernel 

using self-similarity property and use it to find the high-resolution image directly. 

In [73], weighted median filter was proposed for non-iterative reconstruction of a high-

resolution image. Pixels from low-resolution images were mapped to a high-resolution grid, 

then an interpolation was performed using weighted median with Gaussian weights. This 

approach significantly improved the results for noisy images and images with erroneously 

estimated motion. 

Fig. 1 demonstrates the results for the proposed super-resolution algorithms. 

 
a) Low resolution images 

  
b) Box interpolation c) Single-image resampling using Total 

Variation regularization [56] 

  
d) Multi-frame super-resolution using fast 

deconvolution and weighted median 

filter [73] 

e) High quality multi-frame super-resolution 

Fig. 1 An example of super-resolution results for a real image sequence by the proposed 

algorithms. 16 low-resolution images were used to reconstruct a high-resolution image with 

2x upsampling ratio 
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2.2 Ringing Artifact 

Detection and suppression of the image Gibbs oscillations (ringing artifact) was one of the 

main topics of our research during many years. The ringing artifact is caused by high-

frequency information corruption or loss. It appears as waves or oscillations near strong edges. 

The most known examples are its appearance in MRI images, in various image enhancement 

methods (deblurring, sharpening, upscaling, etc.), in JPEG2000 compression. We started with 

designing classical mathematics methods for ringing suppression (TV regularization) and 

ringing level estimation by edge profile analysis [42, 70, 71, 107] and their use for adaptive 

image deblurring and combined linear resampling method with ringing control [43, 45] and 

for the deringing of MRI medical images [130]. 

Later different methods for ringing detection and image deringing based on sparse 

representation approach were developed [122, 123, 124]. The ringing detection and 

suppression algorithms were based on construction of the synthetic dictionary that is used to 

represent ringing effect as a sum of blurred edge and pure ringing component. We compared 

the methods of joint dictionaries learning, and separate learning of natural images dictionary 

and pure ringing dictionary. It was found that the first approach was more appropriate for low 

level of ringing while strong ringing is better suppressed by the separate learning method. 

Last years we worked on hybrid method of deringing [96, 97] based on joint use of classical 

methods and deep learning. 

2.3 Image Sharpening by Grid Warping 

Image deblurring has been one of the challenging image processing problems for a long time. 

The problem is that the blur kernel and information about the noise type and level are not 
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known and have to be estimated. Non-uniformity of image blur, errors in blur kernel and noise 

estimation negatively affect the quality of the image deblurring algorithms. 

We have proposed an approach based on grid warping algorithm to sharpen the edges by 

making the edge transient areas thinner without corrupting them (see Fig. 2) [84]. Compared 

to the classical image deblurring approach, the grid warping approach does not change the 

noise level, does not introduce ringing artifact and does not need the blur kernel. Instead, it 

needs only the approximate level of image blur. 

 
  

a) Typical image enhancement 

approach 

b) Edge profile c) Warping approach: pixels 

are shifted 

Fig. 2 The idea of edge sharpening by grid warping 

 

Since sharpening by grid warping affects only edges while keeping textured areas intact, the 

best scenario is to use the proposed warping algorithm as a post-processing step after existing 

image enhancement algorithms [47, 51, 82]. An example is shown in Fig. 3. 

In [81], an accurate and robust edge width estimation method based on Gaussian edge model 

and unsharp mask analysis is proposed for the problem of parameter choice for the grid 

warping algorithm. Computationally efficient implementation of the proposed algorithm is 

proposed in [19]. In [78], a method to choose the parameters of the grid warping algorithm by 

a convolutional neural network is suggested. In [44, 48], a volumetric implementation of the 
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proposed algorithm is presented. An improvement of the grid warping algorithm in corner 

areas is presented in [75]. 

   
a) Blurred and noisy image b) Total Variation based 

Deblurring 

c) Deblurring + warping 

Fig. 3 An example of applying the proposed warping algorithm as a post-processing step 

after image deblurring 

The software implementation of the proposed algorithm is available at the authors’ website 

https://imaging.cs.msu.ru/en/soft. 

2.4 Image Denoising 

It is still right that image denoising is the state of art challenge for researchers. Image noise 

reduction is an important problem in different areas of applications where we need to remove 

noise components preserving at the same time useful information. Image denoising has 

common approaches based on the assumption that the noise is additive white Gaussian noise 

(AWGN). Nevertheless, in many applications there are special types of noise and even 

combinations of different noise types like in CT, ultrasound, etc. 

Two methods for noise reduction in CT images were introduced in our Lab in [117]: 3D 

extension of fast rank algorithms (Rank-2.5D) and 3D extension of a non-local means 

algorithm (NLM-2.5D). Image denoising algorithms using local Hermite projection method 

were also developed [61, 62]. An improvement of BM3D image denoising and deblurring 

algorithm by Generalized Total Variation was proposed in [74]. Method of low noise image 

https://imaging.cs.msu.ru/en/soft
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construction from a sequence of multiple noisy images using weighted nuclear norm 

minimization was suggested in [83]. 

Many of the existing state-of-the-art image denoising methods for AWGN are based on 

convolutional neural networks (CNN). In many cases they give better results than classical 

prior-based mathematical methods. Nevertheless, one cannot fully rely only on CNN based 

methods. Their results strongly depend on the used training dataset and even small differences 

in the input data can give an unpredictable output disturbance. To deal with the possible 

practical instability of CNN-based methods new hybrid denoising methods that included some 

combinations of CNN-based and classical denoising methods were suggested. These 

combinations of methods can give better results, but nevertheless additional problems arise. 

Along with the high uncertainty level of setting CNN hyperparameters there is also an 

uncertainty in the choice of parameters of classical methods. Thus, a no-reference automatic 

estimation of the parameters of classical filtering methods is needed. To solve this problem, 

we suggested a multiscale method for automatic choice of the denoising parameters. Parameter 

optimization is done in the ridge areas, when we can analyze their appearance on the difference 

between original noisy and filtered image (so-called method noise image). If this difference is 

irregular, then the filtering strength can be increased. If regular components appear on method 

noise, then the filtering strength is too large. We use mutual information closely connected 

with conditional entropy for the analysis and consider images corrupted with Gaussian-like 

noise with small correlation radius. Rfidge detection approach based on Hessian matrix 

eigenvalues analysis is used for estimation of sizes and directions of image characteristic 

details (see Section 2.4.1). 
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The AWGN denoising algorithms with this automatic choice of parameters were developed 

for NLM and LJNLM-LR methods [63], nonlinear diffusion [65], total variation [60], 

BM3D [64], Perona-Malik [80], and Weighted Nuclear Norm [125] methods. 

Hybrid AWGN denoising methods using automatic choice of the classical algorithms were 

presented in [37, 52]. 

Hybrid method for Poisson noise reduction was presented in [21]. 

2.4.1 Multiscale image ridge detection 

Ridge detection is the key moment in the mentioned above image denoising methods. 

We use the following algorithm of ridge detection based on the idea that Laplacian filter can 

indicate the presence of ridge. Let us define: 

𝐿σ(𝑥, 𝑦) = σ2 ⋅ 𝐼(𝑥, 𝑦) ∗ 𝐺σ(𝑥, 𝑦),

𝐺σ(𝑥, 𝑦) =
1

2πσ2
𝑒

𝑥2+𝑦2

2σ2 ,
 

where I(x,y) is intensity of the source image. The multiplier σ2 in the equation for 𝐿σ(𝑥, 𝑦) is 

used to equalize Laplacian filter response at different scales. So, if we increase both the image 

and σ by same factor the filter response will be same for the corresponding points. We also 

note that the differentiation of Lσ(x,y) is equivalent to convolution of the source image I(x,y) 

with corresponding Gaussian function derivative. Let 𝐿𝑥𝑥
σ (𝑥, 𝑦) , 𝐿𝑥𝑦

σ (𝑥, 𝑦) , 𝐿𝑦𝑦
σ (𝑥, 𝑦)  be 

second derivatives of Lσ(x,y) by the corresponding variables. Modulus of Laplacian Δ𝐿σ(𝑥, 𝑦) 

has maximum in the central point of ridge of 2σ width. To find ridge direction we build a 

Hessian matrix: 

𝐻σ(𝑥, 𝑦) = (
𝐿𝑥𝑥
σ (𝑥, 𝑦) 𝐿𝑥𝑦

σ (𝑥, 𝑦)

𝐿𝑥𝑦
σ (𝑥, 𝑦) 𝐿𝑦𝑦

σ (𝑥, 𝑦)
). 
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Then eigenvector 𝑣σ⃗⃗ ⃗⃗ (𝑥, 𝑦)  corresponding to the lowest eigenvalue of 𝐻σ(𝑥, 𝑦)  will be 

directed along the ridge. 

For multiscale ridge detection we use different values of 𝜎 ∈ {𝜎1, … , 𝜎𝑛} , 𝜎𝑖 = 𝜎0 ⋅ 𝜈𝑖−1 . 

Calculating Δ𝐿σ𝑖(𝑥, 𝑦) and 𝑣𝜎𝑖⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦) corresponding to σi, we find the characteristic ridge size 

s(x,y) and direction 𝑣 (𝑥, 𝑦) as: 

𝑠(𝑥, 𝑦) = argmax
𝜎𝑖

(|Δ𝐿𝜎𝑖(𝑥, 𝑦)|) ,

𝑣 (𝑥, 𝑦) = 𝑣𝑠(𝑥,𝑦)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦).
 

An approach for color ridge detection was suggested in [22]. It was also found that the use of 

anisotropic diffusion in the multiscale ridge detection method substantially improved the ridge 

detection quality [59]. 

The hybrid methods based on convolutional neural networks and multiscale ridge detection 

were proposed for biometric image segmentation [102, 121] and human image matting [104]. 

2.5 Image Registration 

Image registration tasks are very actual for general image analysis problems and they arise in 

many biomedical applications. Our specific image registration algorithms in histology (see 

Section 4.1) and cell image analysis (see Section 4.8.2) are described later. 

At the same time we worked on general rigid registration methods acceleration. In [119] an 

iterative exclusion of heavily mismatched contour points, followed by rectification of the 

parameters for the rest of the points was suggested. Here a special structure of the histological 

images that contain elliptical gland slices enabled us to finds corresponding ellipses on the 

fixed and moving images. 
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A series of works for the estimation of the optimal image downsampling coefficient to speed 

up the mutual entropy maximization method for rigid registration was done. The estimation 

algorithm used the analysis of the dependence of parameters of the fast bidirectional empirical 

mode decomposition method on scaling [17, 18, 36, 106]. 

2.6 Image Quality Assessment 

Image quality assessment algorithms usually produce a single value that represents image 

quality. But this value does not explain why one image is better than another one. Common 

factors that affect image quality are insufficient image reconstruction or introducing artifacts 

like ringing effect, blur or noise amplification. An analysis of image artifacts may help 

improve image quality assessment. 

We have proposed a way to find image areas where typical artifacts of image enhancement 

algorithms are likely to appear. We have introduced the concept of basic edges — sharp and 

strong edges that are distant from other edges [72]. 

Two areas near basic edges are identified: BEP (basic edge profile) — the area including the 

basic edge itself with a small neighborhood up to 1/2 of edge width, and BEN (basic edge 

neighborhood) — the area with a distance between 1/2 and 2 of edge width from the basic 

edge. BEP area is used to analyze blur effect while BEN area is used to detect ringing effect. 

The proposed algorithm is illustrated by Fig. 4. It consists of the following steps: 

1. Canny edge detection with zero thresholds and scale parameter σ corresponding to the 

expected artifact size. 

2. Edge masking: edges with gradient magnitude less than 1/2 of magnitude of the 

surrounding edges are considered as masked. There edges usually belong to image textures 

and are not suitable for artifact analysis. 
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3. Finding basic edges: non-masked edges that are distant from other non-masked edges. 

4. Finding BEP and BEN areas. 

  
a) Input image b) Edge detection + edge mask map 

Masked edges are denoted by blue color 

  
c) Basic edges (white color) and non-basic 

edges (red color) 

d) Basic edge areas: BEP (white areas) and 

BEN (gray areas) 

Fig. 4 An illustration of the basic edge areas detection algorithm 

The software implementation of the proposed algorithm is available at the authors’ website 

https://imaging.cs.msu.ru/en/soft. 

In [109], we have proposed a short reference image quality metric based on basic edges and 

Gauss-Laguerre projection method (see Section 3.2 for details). We have defined the modular 

angular edge coherence metric that is computed in the BEP and BEN regions of the image. 

The proposed metric was evaluated in the image sharpening task. 

https://imaging.cs.msu.ru/en/soft
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In [13] we have also introduced a metric based on the modified structural similarity index to 

enhance non-local means image denoising algorithm. The potential of this metric with 

physically justified weighting function for each component was demonstrated. 

3 IMAGE ANALYSIS 

3.1 Hermite Projection Method 

The choice of Hermite functions for signal and image analysis is not accidental. When 

studying and solving operator equations of mathematical physics (let us formally write such 

an equation as 𝐴𝑧 = 𝑢) and especially, when solving inverse problems for these equations, a 

lot of information corresponding to the physics of the phenomena under study is contained in 

the eigenfunctions of the operator A for the considered setting of the function space (or the 

operator 𝐴∗𝐴 in the case of a non-self-adjoint operator). This determines the use of Hermite 

functions being the eigenfunctions of the Fourier transform from 𝐿2(ℝ) to 𝐿2(ℝ) in signal 

processing and analysis methods, because in many cases these methods are based on the use 

of the Fourier transform. Moreover, the very definition of the Fourier transform from 𝐿2(ℝ) 

to 𝐿2(ℝ) in the classic books by Norbert Wiener and Edward Titchmarsh is given using 

Hermite functions. 

Technically, the orthonormal in 𝐿2(ℝ) Hermite functions 𝜓𝑘(𝑥) can be calculated as 

𝜓0(𝑥) =
1

√π
4  𝑒−𝑥2/2,

𝜓1(𝑥) =
√2𝑥

√π
4  𝑒−𝑥2/2,

𝜓𝑛(𝑥) = 𝑥√
2

𝑛
 𝜓𝑛−1(𝑥) − √

𝑛 − 1

𝑛
 𝜓𝑛−2(𝑥).
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They can be also defined using the derivatives of the Gaussian function. The examples of 

graphs of Hermite orthonormal functions are given in Fig. 5-7. 

   
Fig. 5 ψ0 function Fig. 6 ψ4 function Fig. 7 ψ29 function 

Note that the similarity of the behavior of internal oscillations of Hermite functions to the 

behavior of trigonometric functions is not accidental. Asymptotically, the values of the 

Hermite functions tend to the functions cos(x) and sin(x) depending on the parity of the 

number. 

For the case of “symmetrical” Fourier transform defined as 

𝔉𝑓 =
1

√2π
∫ 𝑓(𝑥)𝑒−𝑖𝜆𝑥d𝑥

+∞

−∞

, 

the following equation holds 

𝔉𝜓𝑛 = (−𝑖)𝑛𝜓𝑛, 

so both functions ψn and their Fourier transforms 𝔉𝜓𝑛 are equally computationally localized 

in spatial and frequency domains. 

Generally speaking, the expansion into the series of Hermite functions (Hermite projection 

method) gives an alternative for the concept of “frequency”. And these functions are “time-

frequency” computationally localized instead of non-localized in space trigonometric 

functions, so the Hermite projection method is a good candidate for the substitution of the 

discrete Fourier transform in signal processing and analysis tasks of different dimensions. 

Two-dimensional orthonormal in 𝐿2(ℝ
2) Hermite functions ψn,m are defined in terms of one-

dimensional functions as 
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𝜓𝑛,𝑚(𝑥, 𝑦) = 𝜓𝑛(𝑥)𝜓𝑚(𝑦). 

The examples of graphs of two-dimensional orthonormal Hermite functions ψn,m are shown in 

Fig. 8 and Fig. 9. 

  
Fig. 8 ψ0,0 function Fig. 9 ψ2,2 function 

By the Hermite projection method, we mean the expansion of a function into a Fourier series 

of Hermite functions 

𝑓(𝑥) = ∑ 𝑐𝑘

𝑁

𝑘=0

𝜓𝑘(𝑥), 

where ψk(x) are one-dimensional Hermite functions orthonormal on 𝐿2(ℝ), ck – Hermite 

coefficients: 

𝑐𝑘 = ∫ 𝑓(𝑥)𝜓𝑘(𝑥)d𝑥

𝐴

−𝐴

. 

For the fixed N, the limit A is defined so that all functions ψk, k ≤ N are computationally 

orthogonal to each other. So the expansion is computationally orthogonal. 

The idea of the Hermite projection method was introduced in [41]. The method was used for 

the diffraction data analysis [6, 53] and as a substitution of the Fourier discrete transform for 

image filtering [39]. Then it was used for the tasks of texture parametrization [40], image 

deblocking [67] and image database retrieval [35]. Fast Hermite projection method was 

presented in [38]. 
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In collaboration with Professor Srdjan Stanković and Professor Irena Orović from University 

of Montenegro the method was applied in a series of works in the area of time-frequency 

analysis [115, 116]. 

Hermite functions and Hermite projection method were also used in biometrics for iris image 

analysis, iris image key points detection [90] and comparison [87, 89]. 

In [91, 92] the approximation of Fourier transform of 𝑓(𝑥) = ∑ 𝑐𝑘
∞
𝑘=0 𝜓𝑘(𝑥) using Hermite 

functions (HFT) was defined: 

𝐻𝐹𝑓,𝑛(𝑥) = ∑ 𝑐𝑘(−𝑖)𝑘𝜓𝑘(𝑥)

𝑛

𝑘=0

, 

and the synthesis of HFT phase and magnitude of different images using Hermite projection 

method was suggested. The theorem of uniqueness of signal reconstruction to within a scale 

factor from phase only information of its HFT was given. The algorithm of signal 

reconstruction from HFT phase only information was proposed [89] (Fig. 10). 

In [88], the Hermite projection phase only correlation (HPPOC) function was introduced for 

image matching. If two images are similar, their HPPOC function gives a distinct sharp peak. 

If two images are not similar, the peak value drops significantly. The advantage of HPPOC 

function is especially noticeable in small size image matching, and HPPOC in iris recognition 

for iris key points matching was proposed. 

3.2 Gauss-Laguerre Functions for Image Analysis 

Let us consider a family of complex orthonormal and polar separable functions defined in 

polar coordinates r,γ: 

Ψ𝑛
𝛼(𝑟, 𝛾; 𝜎) = 𝜓𝑛

|𝛼|(𝑟2/𝜎)𝑒𝑖𝛼𝛾. 
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(a)  (b)  (c) (d) 

    
(e) (f) (g) (h) 

Fig. 10 The iterative image reconstruction using HFT phase-based reconstruction algorithm; 

(b) is the 2D projection image approximation of the image (a); (c)-(h) are the results after 

different number of iterations 

These functions are called Gauss-Laguerre circular harmonic functions (CHFs), are referenced 

by integers 𝑛 = 0,1, … (referred by radial order) and α = 0,±1,±2… (referred by angular 

order), and their radial profiles are Laguerre functions: 

𝜓𝑛
|𝛼|(𝑥) =

1

√𝑛! Γ(𝑛 + 𝛼 + 1)
𝑥𝛼/2𝑒−𝑥/2𝐿𝑛

𝛼(𝑥),     𝐿𝑛
𝛼(𝑥) = (−1)𝑛𝑥−𝛼𝑒𝑥

d

d𝑥𝑛
(𝑥𝑛+𝛼𝑒−𝑥) . 

The real and imaginary parts of Ψ𝑛
α(𝑟, 𝛾)  (𝑛 = 0,1, … ,4; α = 1,2, … ,5)  are illustrated in 

Fig. 11. 

Using the Gauss-Laguerre CHFs we developed the projection method for local image 

descriptors construction and keypoints detection. The projection method was based on the 

local image expansion into the set of Gauss–Laguerre CHFs in the support region of a 

keypoint [110]. Using the properties of these function and their connection to 2D Hermite 

functions we significantly sped up the computation of the descriptors. Moreover, we proposed 

a special numerical method to reduce the computational complexity of the proposed projection 

methods [111]. The proposed approach demonstrated its effectiveness compared to SIFT 
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descriptors in the task of estimation of homography matrix for several images taken from 

different viewpoints. The method was further generalized to be used with color images [54] 

where we proposed to use a special form of color image gradient for differential operations on 

color images instead of converting them to grayscale. Such approach demonstrated that the 

use of color information for keypoints descriptors construction for both color and grayscale 

keypoints detection usually enhance the image matching quality. 

 
Fig. 11 Real and imaginary parts of Ψ𝑛

α  (𝑛 = 0,1, … ,4; α = 1,2, … ,5) 

3.3 Phase-Based Methods 

The phase often contains more important information about the signal than the magnitude. 

Generally, the global phase and the local phase are used. The global phase usually means the 

Fourier transform phase of the whole signal while the local phase is the phase of the local 

transform (windowed Fourier transform, wavelet transform, etc.). 

We propose two phase-based methods for key points matching based on the use of phase 

information in local areas around the key points, and we use these methods for iris key points 

matching. In the first method the Hermite projection phase only correlation (HPPOC) function 

is calculated [88, 89]. If the key points are from the same pattern of iris texture, the HPPOC 

function has a sharp peak, while in the case of different eyes, the HPPOC function does not 
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have a sharp peak. The second method uses the phase congruency information in the points 

around iris key points for image matching [99, 100]. 

4 BIOMEDICAL APPLICATIONS 

4.1 Histology 

One of the fastest growing areas of medicine with a wide range of applications for image 

processing and computer vision is the field of histology, which recently due to the widespread 

use of new generation scanners transformed into digital pathology. Modern scanners can get 

images of the entire glass with the tissue sample, the resolution of such whole slide images 

(WSIs) can be 100k×100k pixels and even more, the size of these images is calculated in 

gigabytes. 

The complexity and variety of histological structures open a big number of tasks of automatic 

image analysis including segmentation, registration, content-based retrieval and many more. 

Due to the variability of histological structures, it is almost impossible to analyze these images 

with “classical” mathematical methods, thus we focused on development of deep learning 

methods and hybrid methods. 

Apart from using existing public datasets we created our own dataset PATH-DT-

MSU [27, 86], where within the S1 subset we collected and annotated histological images 

with normal and open glands and proposed a new CNN architecture for gland segmentation. 

The more difficult task that is in demand for histologists is to perform object gland 

segmentation. We developed an original hybrid method of trainable active contours [28], the 

key feature of which was deep integration of classical active contour and the CNN models. 
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In our research we also focused on the problem of reduction of time needed to annotate the 

image and developed a method for fast annotating of biomedical images [29]. This hybrid 

method unites the KNN model with CNN and allows to speed up the gland segmentation 

process by up to 10 times. 

The obvious problem for processing WSIs with neural networks is their incredible resolution 

which negatively impacts the performance. The process of annotating WSIs is also too time-

consuming. On the other hand, the big advantage of working with WSIs is the ability to look 

at the whole image and analyze the layers of tissue. Thus, the easiest way to segment WSIs 

and identify the layers is the approach of segmentation by classification (Fig. 12), which we 

used in [30]. 

 
Fig. 12 Visualization of whole slide histological image segmentation through classification 

with semitransparent color mask. Different colors correspond to different tissue types 

Another important task for the WSIs is image registration. In medical practice it is often 

necessary to jointly analyze differently stained histological sections. However, during the 

preparation of slides the tissues undergo deformations and image registration is highly 

required. The importance of the task is confirmed by the international challenge on Automatic 
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Non-rigid Histological Image Registration (ANHIR) that was organized in frame of 

International Symposium on Biomedical Imaging in 2019 [7], where we took part in the 

preparation of the challenge datasets and development of the evaluation metrics and worked 

with our colleagues from the Czech Republic and Spain. The challenge became continuous 

and online and by the time of writing this paper had 42 submitted methods. The dataset 

collected and marked up during the preparation became a standard benchmark for evaluating 

the histological image registration approaches. Using the ANHIR dataset we developed our 

own affine histological image registration approach [101] (see Fig. 13) that is a zero-shot 

CNN-based method that outperforms the competing affine registration methods by the time 

of writing this paper. 

The main problems of working with WSIs are the problem of transmitting the collections of 

images between histologists and the presence of a large number of different incompatible file 

formats. To solve these problems, we developed PathScribe (https://pathscribe.ru) – a new 

cloud-based multi-platform software tool for working with WSIs. Since autumn 2022 

PathScribe is being used for educational purposes at the Faculty of Medicine, Lomonosov 

Moscow State University. PathScribe is being actively developed both as educational and 

scientific tool. 

The work was performed in collaboration with Professor Pavel G. Malkov and Ilya A. 

Mikhailov from the Medical Research Center, Lomonosov Moscow State University. 

https://pathscribe.ru/
https://pathscribe.ru/
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(a) (b) (c) (d) 

Fig. 13 Affine registration results. Source (a) and target (b) images are depicted in yellow 

and purple color scale respectively for better visualization clarity. The overlay of 

unregistered images is shown in (c), registration result overlay is shown in (d). 

4.2 Color Doppler Flow Mapping 

Computational problems of ultrasound heart diagnostics were investigated in collaboration 

with Petrovsky National Research Center of Surgery of Russian Academy of Medical Sciences. 

They included building a three-dimensional dynamic model of left cardiac ventricle [128] and 

a series of computational methods for Color Doppler Flow Mapping image data unwrapping. 

It includes graph-cut based methods [127] and regularization methods [131]. Later the cross-

frame connection was suggested for optimization of the algorithms [126]. An original 

complex phase preliminary filtration was also used to suppress a false-aliasing artifact and to 

improve the results [129]. Flow variances were used as the weight coefficients in the 

minimization of energy function. For the comparison a test data series were also constructed. 

They used specially designed anatomic 3D left ventricle region model for the simulation of 

the blood flow. Experiments showed that the suggested preliminary filtration and cross-frame 

weights significantly improve the quality of unwrapping. The work was performed in 

collaboration with Academician Valeriy A. Sandrikov and the head of laboratory Tatyana Yu. 

Kulagina. 



24 

4.3 Ultrasound Liver Fibrosis Diagnostics 

Another interesting task in biomedical image analysis is the problem of analyzing ultrasound 

images of liver to perform liver fibrosis diagnostics. The main feature of the task is the 

fuzziness of the image structure itself and the diffuseness of the fibrosis disease. These 

restrictions do not allow to use the entire image for analysis, which reduces the problem to 

applying texture analysis of small regions of interest in the image with clear texture (Fig. 14). 

As a result, we proposed a semi-automatic method for fibrosis diagnostics based on texture 

analysis and machine learning [55]. 

The main disadvantage of ultrasound images due to the physics of the process is the presence 

of specific multiplicative noise in the image, called speckle noise. Therefore, we conducted a 

separate study to assess the influence of the speckle noise level and the use of denoising 

methods on texture analysis [25]. The final result of the study was a complex algorithm for 

diagnosing liver fibrosis using ultrasound images, elastography data and the proposed new 

methods for speckle denoising, and texture analysis with machine learning [26]. 

The work was performed in collaboration with Professor Julius R. Kamalov from Petrovsky 

National Research Center of Surgery. 

   
(a) (b) (c) 

Fig. 14 Visualization of regions of interest selection for texture analysis and corresponding 

class prediction for the problem of liver fibrosis diagnostics. H0 stands for the normal 

control prediction, H1 stands for fibrosis. Ground truth values are H0 for (a), (b) and H1 

for (c). 
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4.4 CT Brain Perfusion 

The quantitative analysis of the blood flow in the brain tissue is one of the important problems 

in neurosurgery. It arises when diagnosing acute ischemic stroke. This problem can be solved 

using computed tomography perfusion imaging. There are various methods for extracting 

quantitative characteristics of cerebral blood flow from CT perfusion data, which differ in 

degrees of their noise resistance. More noise-resistant methods enable the reduction in 

radiation doses when conducting the examination of the patient. Hence, the development of 

noise-resistant methods is an important problem. The classical approaches to solve this 

problem are based on singular value decomposition (SVD) method with Tikhonov 

regularization and methods of total variation (TV) minimization. These methods were 

outperformed by our new algorithm that is using total generalized variation minimization [57], 

but later we found that the better method evaluating the quantitative characteristics of cerebral 

blood flow is based on the regularization using the projection onto a set of monotonic functions 

while minimizing the functional of total generalized variation (TGV) [58]. The work was 

performed in collaboration with Professor Vasily A. Lukshin and Academician Dmitry Yu. 

Usachev from Burdenko National Medical Research Center of Neurosurgery. 

4.5 Alzheimer’s Disease Diagnostics 

In the last decade, computer-aided early diagnostics of Alzheimer’s Disease (AD) and its 

prodromal form, Mild Cognitive Impairment (MCI), has been the subject of extensive research. 

Attempts to recognize the early stage of the disease and incorporate this recognition into 

general population screening have led to the task of determination the stage of Alzheimer’s 

disease by analyzing 3D images of human brain obtained within MRI, DTI, PET modalities. 

In our research we proposed several CNN-based approaches taking into account the specifics 

of the problem. The solutions were based on applying transfer learning [1], constructing 3D 
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convolutional neural networks [23] and optimization of architectures and the number of 

classification model parameters [24]. The work was performed in collaboration with the 

Laboratory of Professor Jenny Benois-Pineau from University of Bordeaux, France. 

4.6 Dermatology 

Different image analysis and processing tasks in dermatology were investigated. They include 

the problems of border extraction of epidermises, derma and subcutaneous fat in high-

frequency ultrasonography [105], dermatological image hair removal using grid warping 

approach [85], ridge-based method for pemphigus diagnosis on immunofluorescence 

images [16], epidermis area detection in immunofluorescence microscopy [14], and adaptive 

dermatological image denoising using Hermite projection method for non-local means 

algorithm [15]. 

The work was performed in collaboration with Professor Natalia V. Makhneva from M.F. 

Vladimirsky Moscow Regional Research and Clinical Institute. 

4.7 Chest X-Ray Image Analysis 

A deep learning-based approach for determination of the radiation level and a system of 

automatic out-of-distribution detection for pulmonary X-ray image analysis have been 

proposed in [11, 12, 94]. Both algorithms evaluate the radiation level according to the number 

of distinctly visible thoracic vertebrae. A CNN-based method for chest X-ray tuberculosis 

diagnostics has been developed. It was used to investigate the influence of dataset thinning 

according to the predicted image radiation level on its performance. The study has revealed 

an increase of diagnostics accuracy after discarding of images of extreme radiation levels from 

the training dataset. The works were performed in collaboration with Professor Liubov E. 

Parolina from the National Medical Research Center for Phthisiopulmonology and Infectious 
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Diseases, Moscow, and the scientists from the E.N. Andreev Scientific Practical Phthisiology 

Center of Sakha Republic, Yakutsk, Russia, headed by Еgor S. Prokopеv. 

4.8 Cell Image Analysis 

One of the most quickly developing areas of computer science is microscopy cell image 

analysis. In the last several years we have developed several methods and algorithms that help 

biologists to analyze their data. 

4.8.1 Live cell image analysis 

In recent years, we developed several image analysis methods that were applied to practical 

problems of live cell images analysis. Namely, we developed a method for tracking of 

intercellular foci in fluorescence microscopy image sequences that was used for investigation 

of the mechanisms underlying the movement of nuclear bodies using experimentally induced 

interphase prenucleolar bodies (iPNBs) [5]. The cornerstone of iPNB tracking approach in this 

work was the use of cell image registration technique [112] (see Section 4.8.2 for details) that 

allowed compensating the global motion of the nucleus and analyze only the local iPNBs 

motion patterns. We further developed the proposed approach and published it as a research 

protocol in a book chapter [108] accompanied with the source code to be applicable in a wider 

range of biological practical tasks. The work was performed in collaboration with the group 

of Professor Eugene V. Sheval from the A.N. Belozersky Institute Of Physico-Chemical 

Biology, Lomonosov Moscow State University. 

4.8.2 Cell image registration 

In clinical practice it is frequently necessary to analyze several images of the same organ 

simultaneously. The images can be obtained in different modalities, at different time points, 

or for different subjects. The problem is actual for different types of data such as MRI, 
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sonography, radiography, computer tomography, microscopy and others. The problem of 

simultaneous image analysis is that the images of different modalities, time points or patients 

are prone to deformations as they are not acquired simultaneously, or undergo deformations 

while image acquisition process. Thus, image registration is the essential problem in medical 

and biological image analysis. 

The registration problem is also actual for cryo-electron microscopy (cryo-EM) images. The 

registration of the single particles in cryo-EM images is one of the crucial steps of the 3D 

model reconstruction pipeline. In 2017, we developed the correlation-based approach for the 

registration of the single particle cryo-EM projection images [2] that enabled one to register 

the images more than 300 times faster than the greedy iterative approach. The complexity of 

the task is related to the extreme level of noise in the cryo-EM images. 

In microscopy live cell image analysis, the registration problem arises in the analysis of 

intercellular foci motion in living cells. It is a complex problem as living cells are moving and 

deforming during the imaging process. The observed motion of subcellular foci consists of 

two components: local motion of the foci and global motion of the nucleus, which includes 

nucleus displacement and deformation. To determine information about the pure subcellular 

foci motion, the global motion of the nucleus needs to be compensated. This is usually done 

by means of image registration. In 2018, the non-rigid method for cell image registration in 

fluorescence microscopy image sequences was developed [112]. The core idea of the method 

is to use the well-founded physical model of non-linear elastic motion based on Navier 

equation which was applied for modelling the nucleus non-rigid motion. This work was started 

while Dmitry V. Sorokin was at the post-doc stay at the Centre of Biomedical Image Analysis, 

Masaryk University, Brno, Czech Republic in collaboration with Dr. Pavel Matula. The 
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obtained results allowed to overcome the global motion compensation problem and were used 

in the live cell analysis pipelines in the biological studies [5, 108]. 

We also developed a method for the non-rigid registration and non-uniform illumination 

compensation of the miniscope images of the rodent brain [103]. 

The registration problem is also the important part of histological image analysis [7, 101] (see 

Section 4.1). 

4.8.3 Cell tracking and segmentation 

The segmentation of intercellular structures and small particles is another common task in live 

cell microscopy image analysis. We developed an approach for laser-induced structure 

detection in live cell nuclei images [33]. The approach is based on active contours and the 

results of the work were used for the development of the standard cell image registration 

evaluation dataset that was further used in [112] and following works on this topic for the 

evaluation of the cell image registration methods. 

The automated tracking of cells and subcellular structures in fluorescence microscopy images 

are extremely important tasks. The former enables the analysis of the life cycle of individual 

cells through migration, growth and proliferation. The latter allows analyzing, for example, 

the motility of fluorescentstained actin filaments [34] for which we developed the automatic 

tracking method. This analysis of filaments motion is important for muscle functions research. 

The cell tracking recently formed the individual well-known area of the biomedical image 

analysis field. The Cell Tracking Challenge (CTC) first organized in 2012 significantly 

stimulated the research in this field and caused the development of many widely used 

segmentation and tracking methods. For example, the wide-spread U-Net segmentation CNN 

architecture was initially developed for this challenge. 
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In 2018, in collaboration with the group of Professor Yasushi Okada (University of Tokyo) 

we developed the cell tracking approach for 2D epifluorescence microscopy image 

sequences [31] that allowed to overcome the tracking result of the existing semi-automatic 

method previously used for this data. The approach was extended in [32] by introducing the 

weakly-supervised segmentation stage which further improved the results. 

In 2022, we developed the weakly-supervised segmentation approach [4] that extended the 

original sparse segmentation annotation using the tracking annotation and cell image 

registration approach. The proposed approach took the third place in Fluo-C2DL-Huh7 dataset 

of the Cell Segmentation Benchmark of CTC in April 2022. The results of the proposed weak 

supervision approach compared to the conventional learning using the provided GT only are 

presented in Fig. 15. 

Image Initial GT 
Instance mask 

(training on GT data) 

Semantic mask 

(training on GT data) 

Instance mask 

(weak supervision) 

Semantic mask 

(weak supervision) 

 
Fig. 15 Segmentation results for Fluo-N2DH-GOWT1, Fluo-N2DL-HeLa, and Fluo-C2DL-

Huh7 datasets of CTC. The red circles indicate the improvement of using the proposed in [4] 

weak supervision approach: the frame boundary cells are segmented in comparison with the 

baseline segmentation method trained on GT data. The white circles show the improvement 

for touching cells. The black circles show the mistakes made in both approaches for Fluo-

C2DL-Huh7 dataset. 
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4.8.4 Cell image synthesis 

Objective benchmarking of biomedical image analysis methods requires a lot of diverse image 

datasets accompanied by reference annotations. For many problems the creation of such 

datasets is really time consuming especially because of creation of reference annotations that 

has to be done with qualified experts manually. Another way to obtain the required data is to 

synthesize realistic images of the same class. If the synthesized data is realistic, it enables one 

to generate as much data as possible and the reference annotation in this case is generated 

inherently by the image synthesis method. Another valuable outcome of such data can be its 

usage for training the machine learning approached in the cases where there is a lack of real 

biomedical data with reference annotations. Thus, development of image synthesis methods 

becomes a very important task. 

In cooperation with research groups from Czech Republic, Spain and France we developed 

the image synthesis methods for generating the realistic images of cells with filopodial 

protrusions with the inherently generated ground truth segmentation masks and tracking 

annotation. The methods are presented in a series of works. The initial proof-of-concept 

approach was presented in [113] where we modeled the filopodial growth and elastic motion 

of the individual cell which was further converted to the 3D image sequences using the virtual 

microscopy techniques. In [114], the work was improved by incorporating more complex 

models into the method resulting in the online application called FiloGen that allows one to 

generate the image sequences of different types of filopodial cells controlling the filopodia 

development, motion and virtual microscopy parameters. The further work [98] was 

concentrated on multiple filopodial cells interaction. The work on FiloGen was started while 

Dmitry V. Sorokin was at the post-doc stay at the Centre of Biomedical Image Analysis, 

Masaryk University, Brno, Czech Republic in collaboration with Dr. Martin Maška. 
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The data obtained using FiloGen was used for developing the state-of-the-art filopodial cells 

segmentation and tracking methods for 3D fluorescence microscopy images in [66] and [8]. 

Another example of realistic biomedical image synthesis method is the cryo-EM and cryo-ET 

image synthesis developed in [3]. 

4.8.5 Blinking fluorescence 

Blinking fluorescence super-resolution microscopy enables to surpass the diffraction limit 

without the use of complex equipment. A variety of algorithms based on different approaches 

have been developed in the past years for the problem of sharp high-resolution image 

reconstruction: SOFI, MUSICAL, SPARCOM, COL0RME, DLBI, 3B etc. Given an input 

image sequence {y̅𝑡}𝑡=1
𝑁 , the broadest statement of the problem is to find at least one of the 

following: its high-resolution preimage {x̅𝑡}𝑡=1
𝑁 , the blinking average or some kind of the 

blinking map (e.g., pixel variance or higher moments). The blur and downscaling operator K 

and the noise variance σ may also be available. In most cases an input image is considered to 

be y̅t = Kx̅t + b̅ + n̅σ, where b̅ is the constant background and n̅σ is the Gaussian noise. 

In [95], a regularization probability-based approach for high resolution image reconstruction 

has been presented and analysis of its performance in various conditions has been carried out. 

The problem is defined as follows: 

{x̅𝑡
∗}𝑡=1

𝑁 , μ̅∗, Λ∗, σ̅∗ = arg min
{x̅𝑡}𝑡=1

𝑁 ≥0,

μ̅≥0,Λ≻0,σ̅≥0

∑[

(y̅𝑡 − Kx̅𝑡)
T (diag(σ̅))

−1
 (y̅𝑡 − Kx̅𝑡) +

+(x̅𝑡 − μ̅)TΛ(x̅𝑡 − μ̅) −

− ln| Λ|   + ln| diag(σ̅)|  

]

𝑁

𝑡=1

+

                      +α‖μ̅‖2 − β ln| Λ|   + Tr(ΓΛ),

 

where μ̅, Λ, σ̅ are the blinking average, the matrix inverse of the blinking covariance matrix 

and the Gaussian image noise pixel-wise variance respectively, α, β are the regularization 

parameters and Γ is the regularization matrix. 
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Being a representation of the image blinking map and due to the lack of the non-blinking 

background, the most desired is the main diagonal of the blinking covariance matrix. To find 

it a family of computationally efficient algorithms has been proposed recently and the 

importance of the regularization term becomes prominent for them. The influence of various 

regularization terms Ω(x), including the RED (regularization-by-denoising) approach based 

on NLM (non-local means) and TV (total variation) denoising methods, upon the solutions of 

the problem defined as 

min
rx̅≥0

1

2
‖Ry̅ − K diag(rx̅) K

T − 𝜎I‖
𝐹

2
+ 𝜆Ω(rx̅), 

where Ry̅ ,rx̅ ,σ are the input image sequence covariance matrix, its preimage pixel-wise 

variance and the Gaussian noise variance respectively, has been considered in [93]. 

The work on blinking fluorescence super-resolution microscopy has been performed in 

collaboration with the Laboratory of Professor Yasushi Okada from the University of Tokyo. 

5 CONCLUSION 

Fast growing of artificial intelligence methods in image analysis and applications enables to 

solve general and applied problems in many cases much more efficiently than classical 

mathematical methods. It also includes tremendous progress in biomedical image analysis. 

Nevertheless, many problems arise. The methods become much more dependent on the used 

dataset, the algorithms may become less robust, etc. Our practice shows that the optimal 

solutions usually can be found by the hybrid methods when we jointly use artificial 

intelligence methods and classical mathematical methods of image processing, analysis and 

enhancement. 
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