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1. INTRODUCTION

Image denoising is one of the most important image processing
problems. Many approaches are used to solve this problem in-
cluding simple Gaussian filter, anisotropic filter (Perona and
Malik, 1990), total variation minimization (Rudin et al., 1992),
and more sophisticated algorithms based on finding and aver-
aging similar blocks in the image: Non-local Means (Buades
et al., 2005), BM3D (Dabov et al., 2007), LSSC (Mairal et al.,
2009), NCSR (Dong et al., 2011). These algorithms assume
that the noise is random while the details are similar so block
averaging results in noise reduction. Learning-based algorithms
including neural networks are also used (Tian et al., 2020), how-
ever, they require prior knowledge about the image.

Finding similar blocks using simple mean squared error
between pixel intensities may be ineffective in the case of strong
noise because it does not take into account image contents. In
order to improve the choice of similar blocks, the blocks can be
transformed into different basis, for example into frequency do-
main using discrete cosine transform (Candès and Recht, 2009).

In this paper, we address the problem of constructing single low
noise image from a sequence of multiple noisy images. This
problem occurs, for example, when taking images in low light
conditions. It could be better to take several shots with short
exposure and combine multiple images into a high-quality one
rather than making a single shot with long exposure and dealing
with motion blur.

Image denoising algorithms based on block matching can use
blocks from multiple images. It results in better noise sup-
pression. Unlike traditional multi-frame super-resolution al-
gorithms (Farsiu et al., 2004), this approach does not require
motion estimation which is computationally expensive.

2. WEIGHTED NUCLEAR NORM MINIMIZATION

Let the input noisy image y be divided into a set of overlapping
blocks yj of equal size with m pixels in each block. For any
block yj we can find similar blocks using either `1 or `2 metric.
In the case of strong noise, preliminary noise suppression can
be used (Jain et al., 1999).

The first n blocks with the least distance to the block yj in-
cluding the block itself form the matrix Y ∈ Rn×m. It can be
represented as a sum

Y = X +N,
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where the matrix X is composed of blocks from the noise-free
image and N is noise.

The matrix Y can be factorized using the SVD decomposition:

Y = UΣV T ,

where U ∈ Rn×n and V ∈ Rm×m are real orthogonal
matrices, Σ ∈ Rn×m is a diagonal matrix with non-negative
elements on the main diagonal named singular values: σi ≥ 0.
It is always possible to choose the decomposition so that the
singular values σi are in descending order. In this case, Σ is
uniquely determined by Y . The number of non-zero elements
σi equals to the rank of the matrix Y .

The highest singular values correspond to the main information
while the smallest values correspond to noise. Since similar
blocks in the image have the same base structure, the matrix
composed from them should have a low rank for images without
noise (Wang et al., 2012). As a result, noise reduction problem
is posed as finding a low rank matrix that approximates the mat-
rix constructed from noisy blocks:

X̂ = arg min
X
‖Y −X‖2F + λ‖X‖∗, (1)

where λ > 0 is the method parameter, ‖X‖∗ is the nuclear
norm:

‖X‖∗ =
∑
i

σi(X)

and ‖X‖F is the Frobenius norm:

‖X‖F =

√√√√ n∑
i=1

m∑
j=1

x2i,j .

In (Cai et al., 2010) it is shown that the problem (1) can be
reduced to

X̂ = USλ(Σ)V T , (2)

where Sλ(Σ) is a diagonal matrix:

Sλ(Σ)i,i = max(σi − λ, 0).

In order to improve the algorithm (Wang et al., 2012), minim-
ization of the weighted nuclear norm is suggested in (Gu et al.,
2014):

X̂ = arg min
X

1

s2
‖Y −X‖2F + ‖X‖ω,∗, (3)



where s is the standard deviation of noise, ‖X‖ω,∗ is the
weighted nuclear norm:

‖X‖ω,∗ =
∑
i

wiσi(X)

with weights w = [w1, . . . , wn], wi ≥ 0.

Since high singular values correspond to structures in the matrix
X while low values correspond to the noise component N , the
authors (Gu et al., 2014) propose using weights inversely to
corresponding singular values:

ωi = c
√
n/(σi(X) + ε), (4)

where c ≥ 0 is some constant value, ε > 0 is a small value to
prevent division by zero.

Similarly to (2), the weighted nuclear norm minimization prob-
lem (3) has the direct solution

X̂ = USw(Σ)V T ,

where
Sw(Σ)i,i = max(σi − wi, 0).

Singular values σi(X) that correspond to noise-free image are
unknown. Using an assumption that the noise is uncorrelated in
both subspaces of U and V , the singular values σi(X) can be
estimated as

σ̂i(X) =
√

max(σ2
i (Y )− ns2, 0). (5)

The algorithm is applied for each block yj resulting in restoring
blocks xj that form the denoised image. The denoising proced-
ure can be executed several times to strengthen the denoising
effect.

Fig. 1 demonstrates the results for these methods.

3. AUTOMATIC PARAMETER CHOICE

The algorithm based on minimization of weighted nuclear norm
has two parameters: c and Niter — the number of iterations.
In real conditions, the reference image is not known and we
are unable to optimize c and Niter by maximizing PSNR and
SSIM.

There exist algorithms that can estimate the quality of image
restoration without using reference image. An analysis of Local
image statistics (Mittal et al., 2012), (Moorthy and Bovik, 2011)
or frequency analysis (Saad et al., 2012) can be used to assess
the overall image quality.

We use the algorithm described in (Mamaev et al., 2018) to
find the optimal parameters for image denoising. Its idea is
based on the assumption that noise and structures are uncorrel-
ated, and that a perfect image denoising algorithm removes only
noise while keeping structures intact so the difference between
noisy and restored images contains only noise. Therefore, the
goal is to minimize the mutual information — the correla-
tion between the difference image and the source image in the
area along edges and ridges. We have previously used this al-
gorithm for single-frame image denoising with automatic para-
meter choice (Volodina et al., 2020).

Laplas operator is used to find linear structures in the noisy im-
age:

Lσ(x, y) = σ2 · I(x, y) ∗Gσ(x, y)

Gσ(x, y) =
1

2πσ2
exp

x2+y2

2σ2

The direction of linear structures is calculated using Hessian
matrix:

Hσ(x, y) =

(
Lσxx(x, y) Lσxy(x, y)
Lσyx(x, y) Lσyy(x, y)

)
(6)

Its eigenvector corresponding to the lower eigenvalue corres-
ponds to the direction of a linear structure.

The linear structure mask is calculated at different scales σ.

In order to find the mutual information, we construct the ran-
dom value p(k,m), where K and M are values in pixels along
edges and ridges

p(k,m) =
1

P
#

{
(x, y) :

⌊
Id(x, y) ·N

Imax

⌋
= k,⌊

Id(x̃, ỹ) ·N
Imax

⌋
= m,

|∆Ls(x,y)(x, y)| ≥ T
}
,

(x̃, ỹ) = (x, y) + s(x, y) · v(x, y),

where Id is the difference image, #{...} is the carnality, P
is the normalization constant, T is linear structure detection
threshold, N is the parameter of quantization, and

s(x, y) = arg max
σ

(|∆Lσ(x, y)|)

is the scale of linear structure.

The mutual information can be used as a measurement of inde-
pendence between random values in mutual distribution

µ(K,M) =

N∑
k=1

N∑
m=1

p(k,m) log
p(k,m)

p(k)p(m)

where

p(k) =

N∑
m=1

p(k,m).

Higher the value µ is, the more correlated the difference im-
age and the noisy image are. Varying the set of parameters c
and Niter , we find the minimal µ which corresponds to optimal
denoising parameters.

4. RESULTS

We have evaluated the proposed algorithm using images from
TID2013 database (Ponomarenko et al., 2015) and WNNM al-
gorithm (Gu et al., 2014).

For every reference image we generated a series of noisy im-
ages. Small affine transform was applied to every image except
the first one to model the real conditions when a camera or an



Noisy image NNM (1) WNNM (3)
(22.26, 0.66) (27.80, 0.67) (29.12, 0.79)

Noisy image NNM (1) WNNM (3)
(22.51, 0.50) (23.51, 0.70) (27.13, 0.77)

Figure 1. Image denoising using minimization of nuclear norm (1) and weighted nuclear norm (3). The values of (PSNR, SSIM) and
shown, higher values are better.

object are moving. Different noise levels (4, 8, 16, 32) were
considered.

During the experiments, we have found that using multiple im-
ages result in improvement of both visual quality and objective
metric values. The improvement is clearly visible in the areas
with complex non-repeated structure. In these areas, only few
similar blocks exist for each processed block in a single image,
and using multiple images significantly increases the number of
similar blocks.

An example of image denoising is shown in Fig. 2.

5. CONCLUSION

A method for multi-frame image denoising using the weighted
nuclear norm minimization has been developed. The evaluation
of the algorithm has shown noticeable improvement of image
quality when using multiple input images instead of single one.
The improvement is the most noticeable in the areas with com-
plex non-repeated structure.

The reported study was funded by RFBR, CNPq and MOST ac-
cording to the research project 19-57-80014 (BRICS2019-394).
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