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Abstract—The paper addresses the problem of no-reference
parameter choice for image denoising by Perona-Malik image
diffusion algorithm using two models. The idea of the approach
is to analyze the difference image between noisy input image
and the outcome of the denoising algorithm for the presence of
structured data from the input image. The analysis consists of
the calculation of the mutual information — a value that shows
the ratio between the structured data and the noise. We apply
the proposed method to photographic images, vector graphics
images and to retinal images with modeled Gaussian noise with
different parameters.

Index Terms—Image denoising, mutual information, Perona-
Malik diffusion, automatic parameter choice.

I. INTRODUCTION

Image denoising is one of the most important problems in
image processing. Noisy images appears everywhere. Images
are often corrupted by noise during acquisition, transmission or
storage. The goal of image denoising is to restore the original
image by removing the noise while preserving the original
data. Image denoising is often applied as a preparation step
before using other image processing methods. A great research
effort has been done for image denoising, but the problem still
remains unsolved.

Most image denoising algorithms depend on noise level and
thus must be controlled by parameters entered by a user or
estimated automatically. A common approach for automatic
choice of the parameters is to estimate the noise level and
then choose the parameters according to this noise level [1].

A less common approach is to analyze the preservation of
image contents after image denoising with different parameters
and to pose the stopping criterion. For example, the work [2]
analyzes the edge characteristics, the work [3] calculates
image statistics for speckle noise reduction. The method [4]
analyzes the difference between the original noisy image and
the processed image. Its idea comes from an assumption that
the noise is unstructured, so in the ideal case the difference
image must contain just random values without any structures
from the original image. The presence of structures in the
difference images indicates that we have wiped out some
important information as well as the noise.
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In this paper, we investigate the automatic choice of the
parameters for non-linear diffusion method proposed in [5] by
Perona and Malik. The diffusion method represents a denoised
image as a solution of nonlinear diffusion equation with the
original image as initial state and homogeneous Neumann
boundary conditions. By choosing the diffusion parameter, one
can manage to clean flat areas and preserve edges. Non-linear
diffusion is an iterative process so there is a stop criterion
problem.

II. PERONA-MALIK IMAGE DIFFUSION

One of the methods for image denoising is based on non-
linear diffusion. The clean image is considered as the solution
of the heat conduction. The diffusion coefficient map is chosen
in order to reduce the diffusivity in edges areas. Such methods
allow to preserve edges during denoising due to the proper
choice of coefficient. Koenderink [6] and Hummel [7] pointed
out that an imaged convolved with the Gaussian kernel can be
viewed as the solution of the heat conduction equation with
original image as initial condition.
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where [ is the input image defined in spatial domain 2, c is the
diffusion coefficient, u(z,T) is the result of heat distribution
at moment 7'

In linear diffusion the coefficient ¢ is considered to be
constant and independent of the image. In non-linear diffusion,
the coefficient ¢ is a function of image gradient magnitude
¢ = ¢(|Vul), which controls the blurring effect. Setting ¢
to 1 in interior of each region and O at the boundaries will
encourage smoothing within a region and stop it on the edge,
so that the boundaries remain sharp. In [5] Perona and Malik
proposed the following two functions as edge estimator:

e1(s) = exp (— (;)2> (1)

and
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where K is the parameter of the method.

The diffusion equation can be solved iteratively by simple
step algorithm:
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S tn=T.

III. TARGET IMAGES

We have analyzed the automatic choice of the parameters for
the Perona-Malik image diffusion algorithm for both models
(1) and (2) for images of the following three classes:

« Photographic images from TID database [8];

« Retinal images from DRIVE database [9];

o Synthetic bubbles image with Gaussian blur with various

blur level within [0, 5] range.

An example of those images is shown in Fig. 1.

In order to model noisy images, we have added white
Gaussian noise to the reference images. For each reference
image, we have generated 20 noisy images with random
standard deviation of Gaussian noise o within [1, 32] range.

Bubbles

Fig. 1. An example of reference images used for the analysis in the paper.

IV. FULL-REFERENCE PARAMETER ANALYSIS

For each noisy image, we have obtained a pair of (K,T)
parameters that maximizes PSNR and SSIM [10] metric val-
ues. We have found that for each image there is a set of (K, T)
values producing the results that are almost indistinguishable

from the optimal result. The set is banana-shaped and lies
perpendicular to the line passing through the zero point. Fig. 2
shows an example of optimal (K,T) values for one of the
images for different noise levels.

Noise = 3

Noise = 8

Fig. 2. A visualization of optimal (K, T") parameters maximizing PSNR for
an image with different noise levels (Gaussian noise, 0 = 3 and o = 8). The
horizontal axis represents K + 1 value in logarithmic scale. The vertical axis
represents 1" value. Top-left corner is (0, 0) point. White regions corresponds
to (K, T') values that produce images with PSNR values close to the optimal
value. Black regions correspond to PSNR values equal or less than PSNR for
the unprocessed image.

We have also noticed that for each noise level the ratio K /T'
can be fixed yielding one-dimensional parameter optimization,
but for different noise level the optimal ratio K/T set is
different.

In order to go from two-dimensional to one-dimensional
parameter optimization for any noise level, we have analyzed
the behavior of optimal (K,T) values and have found out
that a set of optimal points (log K,+/T) lies along a line.
Therefore, we introduce single-argument parameterization for
(K, T) values:

K =qg5,

2 (3)
T=p,

where the coefficients ¢; and ¢o are chosen experimentally by

optimizing the full-reference metrics values.

For both TID, DRIVE and bubbles images, we have fixed
q1 = 0.1 and optimized ¢o value. The ranges of optimal values
for different image classes are different, but they intersects. We
have chosen g2 = 4600 from the intersection.

V. NO-REFERENCE PARAMETER CHOICE

We use the algorithm [4] for no-reference parameter choice.
The algorithm is based on the assumption that the difference
between input noisy and denoised images should not have
features belonging to original image. In order to detect the
presence of these features, the algorithm analyses the eigen-
values of Hessian matrix for scale and direction evaluation of
ridges and edges. The outcome of the algorithm is value p —
the mutual information that can be expressed as the structure-
to-noise ratio for the difference image. The lower the value p
is, the less details are corrupted compared to noise removal.

We use the following scenario: an image denoising algo-
rithm is executed with different parameters, then the mutual
information p value is calculated between the input image and
each denoising result, and the image that minimizes the mutual



information is chosen as the optimal result. In practice, there
can be several local minima, and a special analysis should be
performed in order to choose the optimal result.

After replacing the two-parameter model with the single-
parameter model (3), we find the optimal p value using both
full-reference and no-reference approach based on calculating
the mutual information coefficient.

It has been found that mutual information correlates well
with PSNR and SSIM values for noise level ¢ > 2. An
example is shown in Fig. 3. A argument where PSNR and/or
SSIM reaches its maximum is close to a local minimum of
1(p) function. In the case of several local minima points, we
find the one that maximizes the drop:

Popt = arg, max u(p') — u(p). 4)
p'<p

In the case of very low noise level (o < 2), the method has
limited application. Non-linear diffusion improves the image
very little in the case of low noise. The difference image has
low magnitude, so the mutual information coefficient is low,
and local minimum point becomes unstable or even disappears.
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Fig. 3. Examples of the dependence of PSNR, SSIM and mutual information
on the parameter p corresponding to denoising strength. The PSNR and SSIM
values are normalized into [0, 1] range by a linear transform.

VI. RESULTS

The numerical results for different scenarios of denoising
parameter choice for the models EXP (1) and DIV (2) are
presented in Fig. 4 and Fig. 5. The results are averaged for all
the images with noise level o > 2.

Despite the fact that the proposed no-reference algorithm
has worse PSNR and SSIM values than the optimal ones,
the difference between the results of the proposed algorithm
and the optimal results is practically indistinguishable, and the
effectiveness of image denoising is clearly visible. Also, for
most of the images there is no difference between models (1)
and (2). For some images with sharp edges and strong noise,
the model (1) produces salt-and-pepper noise artifacts (see
Fig. 6). This results in better average PSNR and SSIM values
for the model (2).

The individual results are shown in Fig. 7, Fig. 8 and Fig. 9.

VII. CONCLUSION

The paper has shown that the parameters of the Perona-
Malik image denoising algorithm can be automatically and
effectively chosen by the algorithm that analyzes the presence
of structures from the input image in the difference image.
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TID DRIVE Bubbles
Optimization method EXP | DIV | EXP | DIV | EXP | DIV
Input noisy images 29.95 | 29.95 | 29.86 | 29.86 | 31.09 | 31.09
Full-reference, double-parameter, by PSNR 33.73 | 33.85 | 38.55 | 38.65 | 40.10 | 40.39
Full-reference, double-parameter, by SSIM 33.51 | 33.66 | 38.08 | 38.16 | 38.59 | 39.12
Full-reference, single-parameter, by PSNR 33.70 | 33.62 | 38.33 | 38.26 | 39.51 | 39.65
Full-reference, single-parameter, by SSIM 33.44 | 33.58 | 37.61 | 37.66 | 37.87 | 38.46
No-reference, single-parameter, by MU (proposed) | 33.35 | 33.41 | 38.31 | 38.39 | 39.94 | 40.20
Fig. 4. PSNR results for anisotropic diffusion model for images of different classes.
TID DRIVE Bubbles
Optimization method EXP DIV EXP DIV EXP DIV
Input noisy images 0.7626 | 0.7626 | 0.5758 | 0.5758 | 0.6969 | 0.6969
Full-reference, double-parameter, by PSNR 0.9018 | 0.9043 | 0.9121 | 0.9138 | 0.9532 | 0.9576
Full-reference, double-parameter, by SSIM 0.9090 | 0.9102 | 0.9225 | 0.9229 | 0.9712 | 0.9730
Full-reference, single-parameter, by PSNR 0.8997 | 0.9023 | 0.9052 | 0.9065 | 0.9487 | 0.9521
Full-reference, single-parameter, by SSIM 0.9074 | 0.9085 | 0.9180 | 0.9183 | 0.9660 | 0.9684
No-reference, single-parameter, by MU (proposed) | 0.8972 | 0.9001 | 0.9105 | 0.9110 | 0.9519 | 0.9533

Fig. 5. SSIM results for anisotropic diffusion model for images of different classes.
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S |
The result of denoising using non-linear diffusion with
model EXP (1)

The result of denoising using non-linear diffusion

Fig. 7. Denoising by the proposed method. TID image 107, noise o = 4.

A |
The result of denoising using non-linear diffusion with
model DIV (2)

Fig. 6. Denoising by the proposed method. Bubbles image 100, noise o = 25.
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Fig. 8. Denoising by the proposed method. TID image 108, noise o = 32. Fig. 9. Denoising by the proposed method. DRIVE image 102, noise o = 13.



