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Abstract—Three-dimensional (3D) deconvolution microscopy is
very effective in improving the quality of fluorescence microscopy
images. However, due to ill-posed nature of the deconvolution,
many images still remain blurry after deblurring algorithms. We
use an edge sharpening algorithm based on pixel grid warping
to further improve the quality of blurry images in edge areas.
Its main idea is to move pixels toward the nearest image edge
to make them sharper without noise amplification. In this paper,
we improve the results of recently developed 3D post-processing
algorithm by considering the blur kernel that correspond to real
optic blur and by optimizing the pixel displacement function. We
illustrate its effectiveness on real data with modeled blur.

Index Terms—edge sharpening, image deblurring, grid warp-
ing, optical blur, 3D image sharpening

I. INTRODUCTION

Image blur occurs in numerous types of 2D and 3D images,
e.g. photographs, medical images of different modalities, tele-
scopes, microscopes, satellite sensors, etc. As a consequence,
the deblurring problem (also called deconvolution) is widely
investigated for simpler 2D case and then extended to 3D case.
Deblurring methods require explicit knowledge or accurate
estimation of the blurring kernel — Point Spread Function
(PSF).

Image deblurring is a challenging ill-posed problem of
finding a sharp image I0 from the given blurred image IB
using the blur model

IB = I0 ∗H + n.

If the blur kernel H and noise n are known exactly,
the deconvolution problem can be effectively solved by
regularization-based algorithms [1].

Typically, there is no or few information about H and n. In
that case, the blur kernel is to be estimated. There are some
fairly powerful techniques for blind image deblurring [2], [3].
Non-uniformity of image blur, noise and blur kernel estimation
errors may significantly degrade the result. It is not easy to find
optimal parameters for a compromise between smooth result
with blurry edges and sharp result with artifacts like ringing or
noise amplification when blur kernel is estimated with errors.

Blurred image enhancement methods that are not based
on the PSF concept can be referred to as image sharpening
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methods. A commonly used method of image sharpening is
the unsharp masking method [4], [5]. The main problem of
the existing sharpening methods is unwanted overshooting
artifact and noise amplification that may appear in the output
image [6].

The aim of the paper is to develop a post-processing method
to enhance the results of existing image deblurring algorithms.
We present an image sharpening method that performs the
enhancement of a blurred image in the neighborhood of image
edges. The idea is to transform the neighborhood of the blurred
edge so that the neighboring pixels move closer to the edge,
and then resample the image from the warped grid to the
original uniform grid.

The warping approach is related to the morphology-based
sharpening [7] and shock filters [8]–[10]. But these methods
make the image appear piecewise constant which is effective
mostly for cartoon-like images. The proposed method is ap-
plied to edges locally so the textures are preserved a priori.
Also warping compresses the edge neighborhood at fixed rate
and does not make the image piecewise constant.

The warping approach for image enhancement was initially
introduced as the solution of a differential equation derived
from the warping process constraints [11]. The solution of the
equation is used to move the edge neighborhood closer to the
edge, and the areas between edges are stretched. The method
has several parameters, and the choice of optimal values for
the best result is not easy. Due to the global nature of the
method the resulting shapes of the edges are often distorted.
In another work [12], the warping map is computed directly
using the values of left and right derivatives. In both these
methods [11], [12] the pixel shifts are proportional to the
gradient values. It results in oversharpening of already sharp
and high contrast edges and insufficient sharpening of blurry
and low contrast edges. Both methods also introduce small
local changes in the direction of edges and produce aliasing
effect due to calculation of horizontal and vertical warping
components separately.

Application of grid warping method for the enhancement
of 2D image deblurring methods has been already consid-
ered [13], [14]. In this work, we improve the results of recently
developed 3D post-processing algorithm [15] by considering
the blur kernel that correspond to real optic blur and by



optimizing the pixel displacement function.

II. VOLUME IMAGE BLUR MODEL

Although 2D PSF of a microscope can be approximated by
a Gaussian kernel, 3D PSF does not have an accurate Gaussian
approximation [16]. There is a variety of PSF models, but the
most popular is the Gibson-Lanni model [17], [18]. This model
takes into consideration the difference between the design
conditions and experimental conditions, such as the object
thickness and coverslips. An example of 3D microscopy PSF
based on the Gibson-Lanni model is shown in Fig. 1.

(a) (b) (c)

Fig. 1: An example of the 3D microscopy PSF (256×256×75)
based on the Gibson-Lanni model. a, b) (x, y) sections, the
24th and the 44th slices. c) (x, z) section, the 127th and the
192nd slices. Here the images are stretched in z dimension to
make the spatial resolution in both x and z directions equal.

III. ONE-DIMENSIONAL EDGE SHARPENING

The idea of the proposed 3D image sharpening algorithm
is to move pixels towards edge centerline [19]. Consider one-
dimensional edge profile g(x) centered at the point x = 0 (see
Fig. 2), d(x) — displacement function and h(x) = g(x+d(x))
— warped edge profile.

(a) Typical image en-
hancement approach

(b) Edge profile (c) Warping approach:
pixels are shifted

Fig. 2: The idea of edge sharpening using grid warping. Red
line is the original edge profile, blue line is the edge profile
sharpened using grid warping.

Simple scaling f(x) = kx will give sharper edge but it will
also shrink the entire image. To make the edge sharper without
changing image size, only the area near the edge center should
be shrunk while the area outside the edge should be stretched
proportionally.

The warped grid should remain monotonic (i.e. for any x1 <
x2 new coordinates should be x1+d(x1) ≤ x2+d(x2)), so the
displacement function should match the following constraint:

d′(x) ≥ −1. (1)

Another constraint localizes the area of warping effect near
the edge center:

d(x)→ 0, |x| → ∞. (2)

The displacement function d(x) greatly influences the result
of the edge warping. On the one hand, the edge slope should
become steeper. On the other hand, the area near the edge
should not be stretched over some predefined limit to avoid
wide gaps between adjacent pixels in the discrete case.

The work [19] constructs the displacement function d(x)
using the proximity function

p(x) = 1 + d′(x)

d(x) =

x∫
−∞

(p(y)− 1)dy.
(3)

The proximity is the distance between adjacent pixels after
image warping. This value is inverse to the density value. If
the proximity function p(x) is less than 1, then the image area
is shrunk at the coordinate x. If the proximity is greater than
1, then the image is stretched. The identity transform has the
value p(x) ≡ 1.

The constraint (1) leads to non-negativity of the proximity
function. Also high values of the proximity function should
be avoided to preserve image textures.

IV. VOLUMETRIC IMAGE SHARPENING

To apply the warping algorithm to 3D images, we generalize
the two-dimensional extension [19] to the three-dimensional
case. The displacement is a 3D vector field ~d(x, y, z) with the
following constraints similar to the 2D case:

1) The shapes of the edges cannot be warped, so
~d(xe, ye, ze) = 0 for each edge point (xe, ye, ze).

2) There cannot be any turbulence: rot ~d = 0. Since
rot∇u ≡ 0, the displacement field is assumed to be gradient
of some scalar function u(x, y, z): ~d(x, y, z) = ∇u(x, y, z).

3) The constraint (1) takes the form

div~d ≥ −1 (4)

and the proximity function is

p(x, y, z) = 1 + div~d(x, y, z). (5)

Since div∇ ≡ ∆, where ∆ is a Laplacian, the warping
problem is posed as a Dirichlet problem for the Poisson
equation in the area of the image:{

∆u = p(x, y, z)− 1,

u(x, y, z) = 0 at image borders.
(6)

The second constraint here is the boundary condition: the
displacements at image borders should be equal to zero.

In order to get the same results as in the 1D case and to
keep the edge pixels unwarped, the proximity value should be
equal to the 1D proximity function depending on the distance
to the edge. However, the distance to the closest edge ρ as
an argument of the proximity function p(ρ) is not efficient as



it may produce gaps between close edges. Also it blurs edge
ends.

We suggest the following method for calculating the prox-
imity function:

p(x0, y0, z0) =

∑
(x,y,z)∈E(x0,y0,z0)

p(xn)Gσ(xt)|~g(x, y, z)|∑
(x,y,z)∈E(x0,y0,z0)

|~g(x, y, z)|

(7)
where E(x0, y0, z0) is the set of edge points in the neighbor-
hood of (x0, y0, z0). The 3D edge point set is obtained using
3D Canny edge detector which is similar to 2D algorithm [20].

The value xn is the projection and the value xt is the length
of the rejection of the vector (x0 − x, y0 − y, z0 − z) on the
edge gradient vector ~g(x, y, z).

The function p(xn) is the 1D proximity function, weighting
function Gσ(xt) is Gauss function with standard deviation
equal to the edge’s blur σ.

We solve the partial differential equation (6) using Fourier
transform technique.

V. PROXIMITY FUNCTION MODELS

Two models have been considered for the choice of the
proximity function.

A. Difference of Gaussian functions

For volumetric Gaussian blur with parameter σ, the dif-
ference of two Gaussian functions is used as a proximity
function [15]:

p1(x) = 1 + κ(Gσ1
(x)−Gσ2

(x)), σ2 > σ1,

κ = 1/ (Gσ1
(0)−Gσ2

(0)) .
(8)

It allows to control the areas of shrinkage and stretching
independently [19]. Parameter σ1 controls the width of the
densification area while parameter σ2 controls the width of
the rarefication area. We use σ1 = σ and σ2 = 2σ. Fig. 3 il-
lustrates grid warping for edge sharpening using this proximity
function.

Fig. 3: Edge sharpening by grid warping using the proximity
function (8). Blue function is the blurred edge with some
noise. Red function is the result of warping. Green line is
the proximity function.

B. Piecewise constant

In piecewise constant model (PWC), the area of densifi-
cation with constant parameter is followed by the area of
rarefication with another constant parameter [21]:

p2(x)[a, b, c] =


1 + c

a , |x| ≤ a,
1− c

b−a , a < |x| ≤ b,
1, |x| > b.

The corresponding 1D displacement function looks as:

d2(x)[a, b, c] =


c
ax, |x| ≤ a,
c b−|x|b−a signx, a < |x| ≤ b,
0, |x| > b.

Desprite the discontinuities, this model has greater sharp-
ening effect than DoG model (8).

Fig. 4: Piecewise linear displacement function.

The parameters a, b and c define the width of densification
and rarefication areas and the steepness of the displacement
function. The plot of this displacement function can be seen at
Fig. 4 The strongest warping effect which meets the condition
(1) is achieved when c = −a. Therefore, we use the proximity
function with two parameters:

p2(x)[a, b] = p2(x)[a, b,−a] =


0, |x| ≤ a,
b

b−a , a < |x| ≤ b,
1, |x| > b.

(9)

During the experiments we analyzed the choice of parame-
ters a and b in order to maximize objective image quality. It
was found that the ratio b/a of optimal parameters a and b
was different for different images. At the same time, variations
of the parameter b did not significantly influenced the image
quality. To reduce the number of parameters at the cost of
insignificant decrease of image quality, we set b = 3

2a:

p2(x)[a] = p2(x)[a,
3

2
a,−a] =


0, |x| ≤ a,
3, a < |x| ≤ 3

2a,

1, |x| > 3
2a.

(10)



VI. RESULTS

Test 3D images were generated using Pollen image, which
is a thin optical section through the center of the des-
iccated stage of the mature pollen, collected from http://
www.cellimagelibrary.org/images/35532. 16-bit reference im-
age was convolved with the Gibson-Lanny blur kernel and
corrupted by Poisson noise with different noise levels λ. Then
Richardson-Lucy algorithm [22], [23] with Total-Variation
regularization [24] and 200 iterations was applied to restore the
original image from the convolution result. ImageJ software
with plugin DeconvolutionLab2 was used. The examples of
images are at Fig. 5.

(a) (b) (c)

Fig. 5: An example of the test image set, (x, y) section.
a) Reference image. b) Blurred and noisy image. c) Deblurred
image using RL-TV [24] method.

Then we applied image warping with two considered mod-
els as a post-processing algorithm after image deblurring. The
results are shown in Table I and Figures 6, 7.

The execution time of image warping algorithm for 256×
256× 75 image is about 50 seconds for Intel Core i5 Skylake
processor, and 5 minutes for 1024×1024×75 image. RL-TV
algorithm from DeconvolutionLab2 plugin has taken 8 minutes
and 10 hours respectively. Fast GPU implemenation of the
proposed algorithm is possible [25].

Method No noise λ = 15 λ = 50
Blurred and noisy images 27.05 27.05 27.04
RL-TV [24] 32.16 32.08 29.99
RL-TV + DoG warping (8) 32.20 32.13 30.21
RL-TV + PWC warping (10) 32.30 32.24 30.37

TABLE I: PSNR values for test image deblurring with differ-
ent noise levels and different warping proximity function.

VII. CONCLUSION

The proposed method sharpens 3D images in edge areas. It
has the following advantages and features:

1. The best results are achieved when grid warping is used
as a post-processing method after deconvolution-based image
deblurring methods. Traditional image deblurring methods
improve overall image quality while grid warping pays special
attention to image edges.

2. No artifacts like ringing effect or noise amplification are
introduced because pixel values are not changed.

3. Unlike morphological methods and shock filters, the
resulting images look natural and do not inevitably become
piecewise constant.

Reference image Degraded image
PSNR=27.04922

RL-TV method [24], RL-TV + proposed warping,
PSNR=32.15603 PSNR=32.3046

Fig. 6: Image warping algorithm example 1, PWC proximity
function model (10), a = 0.67.

Reference image Degraded image,
PSNR=27.04922

RL-TV method [24], RL-TV + proposed warping,
PSNR=32.15603 PSNR=32.3046

Fig. 7: Image warping algorithm example 2, PWC proximity
function model (10), a = 0.67.
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