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Abstract—In this work we propose a post-processing method
for BM3D algorithm that has become a state-of-the-art image
denoising and deblurring algorithm. Although BM3D algorithm
produces results with high objective metrics values, it also adds
noticeable high-frequency artifacts. We suppress these artifacts
using second order Total Generalized Variation (TGV) algorithm.
TGV algorithm is an extension of Total Variation denoising
method but it does not tend to make images piecewise constant.
We also suggest an efficient numerical scheme for TGV minimiza-
tion. In order to validate the proposed idea, tests were performed
on noisy real images and synthetic images with different levels
of noise.

Index Terms—image denoising, generalized total variation,
BM3D, TGV

I. INTRODUCTION

Most solutions of inverse problems and in particular of
mathematical imaging problems are formulated as a solution
of the minimization problem for a regularization functional

J(z) = argmin
z

(F(z) +R(z)) (1)

where F(z) represents data fidelity and R(z) is a regulariza-
tion term.

In image restoration applications, the most common data
fidelity term has a form of

F(z) = ‖Az − u‖2, (2)

where A : z → u is a direct operator, u is the given
observation, z is the possibly error-prone data and ‖ · ‖ is
an appropriately chosen Hilbertian norm.

Total Variation regularization

R(z) = α‖∇z‖1 (3)

has been used for image enhancement for almost 30 years [1]
for its capability to preserve edges and is still relevant nowa-
days. For example, Total Variation is used as a loss function
in convolutional neural networks [2], in image inpainting [3]
and restoration [4].

However, Total Variation is also well known for producing
staircase-like artifacts. A concept of Total Generalized Varia-
tion (TGV) has been recently proposed to be applied to images

where the assumption that the image is piecewise constant is
not valid. The Total Generalized Variation introduced in [5],
[6] is a functional that is capable to measure, in some sense,
image characteristics up to a certain order of differentiation.
The difference between TV and second-order TGV regular-
ization for image denoising is shown in Fig. 1.

(a) Noisy image (b) TV regularization (c) TGV regularization

Fig. 1. The difference between TV and TGV regularization.

Recently proposed Block matching and 3D (BM3D) filter-
ing added a new dimension to the study of denoising and
deblurring [7], [8]. BM3D is the current state-of-the-art of
denoising and is capable of achieving better denoising as
compared to regularization-based methods. BM3D is very
effective for additive white Gaussian noise removal. Its weak
point is processing the images with structured noise. The
modifications of BM3D have been developed for the case
of correlated noise [9], [10]. However, the artifacts may still
appear after BM3D deblurring because of noise structure.

In our work, we consider the improvement of BM3D
algorithm by applying TGV denoising. New numerical scheme
and TGV minimization algorithm are also proposed in the
paper.

II. GENERALIZED TOTAL VARIATION

The second order TGV functional is formulated as [11]:

TGV 2
α (z) = min

v
α1‖∇z − v‖1 + α2‖∇v‖1. (4)

Here, the minimum is taken over the vector field v. The ratio
of positive weights α1 and α2 provides a way of balancing
between the first and second derivative of the function.



A. Auxiliary variable elimination

One of the issues with TGV stabilizer is developing the
efficient minimization of (4). In order to simplify the mini-
mization procedure, we eliminate the auxiliary variable v by
calculating the second derivative directly:

TGV 2
α (z) = α1‖∇z‖1 + α2‖∇(∇z)‖1. (5)

The main reason of this transform is to avoid the calculation
of gradient components and to use only gradient magnitude.

B. First order derivative calculation

Another issue with TV and TGV stabilizers is calculating
the derivatives of image z. Proper numerical differentiation
has a great influence on the result. For example, an ordinary
derivative

|∇z|i,j =
√
z2x + z2y =

√
(zi+1,j − zi,j)2 + (zi,j+1 − zi,j)2

could make the result anisotropic while symmetric derivative

|∇z|i,j =

√(
zi+1,j − zi−1,j

2

)2

+

(
zi,j+1 − zi,j−1

2

)2

does not use the value of the central pixel and could produce
pattern artifact.

In simple Total Variation regularization (3) we set penalty
on the sum of gradient magnitude, but we do not use the
gradient components. Therefore, we can use the symmetrized
derivative:

|∇z|i,j =

√
1
2 ((zi+1,j − zi,j)2 + (zi−1,j − zi,j)2 +

+ (zi,j+1 − zi,j)2 + (zi,j−1 − zi,j)2)
. (6)

Using the Total Variation in (6) directly is computationally
inefficient due to square root and division calculation during
the minimization procedure. A more computationally efficient
way to represent the Total Variation is the following:

|∇z|i,j =
1

2
(|zi+1,j − zi,j |+ |zi−1,j − zi,j |+

+|zi,j+1 − zi,j |+ |zi,j−1 − zi,j |).
(7)

The drawback of the approach (7) is anisotropy. A solution
to this problem has been proposed in [12] as a Bilateral
Total Variation functional that combines both efficiency and
isotropy:

|∇z|i,j =
p∑

s,t=−p

1√
s2 + t2

|zi+s,j+t − zi,j |, |s|+ |t| > 0. (8)

Here we calculate the sum of moduli of partial derivatives.
The value p controls the window size. Typical values are p = 1
and p = 2. We use p = 1 in order to reduce computational
complexity.

C. Second order derivative calculation

The second order derivative is represented as a tensor:

∇(∇z) =
[
zxx zxy
zxy zyy

]
.

We calculate the magnitude of the second order derivative
in the same way as of the first order derivative:

|∇(∇z)|i,j =
p∑

s,t=−p

1√
s2 + t2

|zi+s,j+t−

−2zi,j + zi−s,j−t|, |s|+ |t| > 0.

(9)

III. MINIMIZATION ALGORITHM

We use Sutskever-Nesterov accelerated gradient algo-
rithm [13], [14] to minimize the regularization functional (1):

z(0) = 0

v(0) = 0

g(k+1) = ∇J(z(k) + µv(k))

v(k+1) = µv(k) − β(k+1)g(k+1)

z(k+1) = z(k) + v(k+1)

(10)

We choose the number of iterations N and the step β(k) in
the following way

β(k+1) = 25 · 0.01k/N P

‖g(k+1))‖1
,

where P is the image size (the number of pixels), and the pixel
value range is within [0, 255]. This choice of the exponentially
diminishing step leads to a non-changing image after about N
iterations.

The accuracy of the algorithm depends on the number of
iterations N and the momentum µ. Experiments have shown
that the minimal possible number of iterations that produces
reasonable results for photographic images with Gaussian
noise for deblurring and denoising problems is N = 30 and
µ = 0.8.

IV. EXPERIMENTS

Using an experimental approach, we have analyzed the
effect of TGV applied to noisy images deblurred by BM3D
algorithm.

A. Blur model

We have considered three types of blur corresponding to
real out-of-focus blur in photographic images:

1. Gaussian blur

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
2. Disk blur

Dr(x, y) =

{
1, x2 + y2 ≤ r2,
0, otherwise.

3. Ring blur



Rr(x, y) =


0.25, x2 + y2 ≤ 0.75r2,

1, 0.75r2 < x2 + y2 ≤ r2,
0, otherwise.

The examples of real out-of-focus blur are shown in Fig. 2.
The kernels of modeled blur are shown in Fig. 3.

(a) Object is in front of the
focal plane

(b) Object is behind the focal
plane

Fig. 2. Examples of real out-of-focus blur kernels — images of small bright
dot.

(a) Gaussian kernel (b) Disk kernel (c) Ring kernel

Fig. 3. Blur kernels used in the paper.

B. Scenario

Test images were generated using 24 natural images from
TID2013 database [15]. Each reference image was convolved
with Gaussian, disk and ring blur kernels with random blur
parameter within [1, 5] range. Gaussian white noise with
random standard deviation in the range of [0, 10] was added
to each blurred image.

The images were deblurred and denoised by BM3D algo-
rithm [8]. In practice, the blur kernel has to be estimated. We
assume that the blur kernel type is known and its parameter
allows up to 20% relative error.

Then we applied TGV algorithm with identity operator A
in data fidelity term (2):

zR = argmin
z

(
‖z − u‖22 + α1‖∇z‖1 + α2‖∇(∇z)‖1

)
.

The regularization parameters α1 and α2 were chosen in
order to maximize the SSIM value after denoising.

C. Results

The experiments have shown that application of GTV de-
noising after BM3D algorithm leads to image quality improve-
ment. Strong TGV regularization tends to produce unnaturally
looking image and fine detail loss while BM3D algorithm

keeps some noise. A combined algorithm effectively suppress
the noise without detail loss.

Some examples of the obtained results are shown in Fig. 4,
Fig. 5 and Fig. 6.

(a) Reference image (b) Blurred and noisy
image, PSNR = 22.58,
SSIM = 0.5699

(c) TGV deblurring,
PSNR = 26.77, SSIM =
0.8330

(d) BM3D deblurring,
PSNR = 24.55, SSIM =
0.6944

(e) Proposed TGV after
BM3D, PSNR = 27.21,
SSIM = 0.8575

Fig. 4. Application of the proposed method to ’flower’ image fragment with
ring blur.

(a) Reference image (b) Blurred and noisy
image, PSNR = 21.64,
SSIM = 0.5428

(c) TGV deblurring,
PSNR = 23.21, SSIM =
0.7572

(d) BM3D deblurring,
PSNR = 23.29, SSIM =
0.7404

(e) Proposed TGV after
BM3D, PSNR = 23.32,
SSIM = 0.7612

Fig. 5. Application of the proposed method to ’lighthouse’ image fragment
with Gaussian blur.

V. CONCLUSION

In this paper a method based on Total Generalized Variation
has been used to enhance the results of BM3D denoising
and deblurring algorithm. The proposed combination gets the
benefits of both TGV and BM3D algorithms by reducing
the noise without loss of details. A computationally efficient



(a) Reference image (b) Blurred and noisy
image, PSNR = 22.66,
SSIM = 0.5943

(c) TGV deblurring,
PSNR = 25.85, SSIM =
0.8067

(d) BM3D deblurring,
PSNR = 26.05, SSIM =
0.8020

(e) Proposed TGV after
BM3D, PSNR = 26.11,
SSIM = 0.8097

Fig. 6. Application of the proposed method to ’boat’ image fragment with
ring blur.

numerical algorithm for minimization of TGV regularization
functional has been proposed.

Our implementation of TGV deblurring and denoising can
be downloaded at http://imaging.cs.msu.ru/soft.
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