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Abstract—The paper presents a method for linear motion
blur and out-of-focus blur suppression in photographic images.
Conventional image deconvolution algorithms usually have a
regularization parameter that specifies a trade-off between in-
complete blur removal and high probability of artifacts like
ringing and noise. The idea of the proposed image deblurring
method is to apply grid warping approach to improve image
sharpness after conventional image deconvolution algorithms
used with strong regularization. Grid warping algorithm moves
pixels in edge neighborhood area towards the edges making them
sharper without introducing artifacts like ringing and noise.
The proposed method is expected to have the same sharpness
but decreased risk of artifacts compared to standalone image
deconvolution. In order to validate the proposed scheme, we
have applied it to artificially blurred images and images with
real blur, with different levels of noise and blur radii, directions
and lengths.

Index Terms—edge sharpening, image deblurring, grid warp-
ing, optical blur, 3D image sharpening

I. INTRODUCTION

Image blur is a common defect in photographic images. It
is caused by camera and object motion during exposure or
wrong focusing. during the exposure period, the movements
of the camera or the objects produce motion blurred images,
as the luminance changes are integrated over time.

Development of image deblurring algorithms is one of the
most important image processing problems. Image deblurring
is usually posed as a classical linear inverse problem. It
consists of finding an unknown image from blurry and noisy
observation:

zB = z ∗H + n,

where zB is an observed image, H is the blur kernel and n
is additive noise. If the blur kernel H and the information
about the noise n are known with sufficient precision, the
deconvolution problem can be effectively solved by numerous
image deconvolution algorithms [1]–[3].

In practice, the blur kernel H and noise level n are not
known and their estimation is a challenging problem. Blind de-
convolution algorithms can be used to solve this problem [4]–
[6] but their results are unpredictable in many real applications
due to high complexity and non-uniformity of blur kernel.

One of the ways to reduce blur kernel complexity and to
improve the effectiveness of blur kernel estimation algorithms
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Fig. 1. Comparison of motion blur kernels at different exposures.

is to reduce the exposure time. The side effect is a proportional
increase of the noise level. In order to compensate this effect,
several techniques have been developed. One of them can be
summarised as taking a series of short exposure frames and
programmatically combining them into one image [7]. Another
approach is to take blurred-noisy image pair and to use it for
the blur kernel estimation [8].

An increase of modern cameras sensor resolution has re-
sulted in visible motion blur even at short exposure time.
Compared to long exposure motion blur, a short exposure blur
kernel has significantly simpler structure (see Fig. 1). Linear
blur model is used to approximate the motion blur at short
exposures.

Different linear blur detection and suppression algorithms
have been developed recently. The work [9] proposes a deep
learning-based approach for estimation of the non-uniform
motion blur, followed by a patch statistics-based deblurring
model adapted to non-uniform motion blur. The method [10]
is based on the spectrum of the blurred images and operates
with an assumption which is valid for most natural images:
the power-spectrum is approximately isotropic and decreases
exponentially for higher frequencies. In [11], the blur-field
estimation is also based on the analysis of the spectral content
of blurry image patches.

Although the blur kernel has become simpler, deconvolution
algorithms can still produce unwanted artifacts like ringing and
noise amplification. This risk can be reduced by adjusting the
parameters of deconvolution algorithms at the cost of keeping
residual blur.

An alternative to classical deconvolution algorithms is grid



warping approach. Its idea is to transform the neighborhood
of the blurred edge so that the pixels move closer to the edge.
Since pixel values do not change, the grid warping approach
cannot amplify noise or introduce ringing artifact. The warping
approach for image enhancement has been introduced in [12].
In that work pixel grid warping is performed according to the
solution of a differential equation derived from the warping
process constraints. The solution of the equation is used to
move the edge neighborhood pixels towards the edge, and the
areas between edges are stretched. In [13] warping is computed
directly using the values of left and right derivatives.

The limitation of the grid warping approach is that it is
applied only to edges and its use as a standalone algorithm
is limited. The works [14], [15] present an improved grid
warping algorithm and suggest using grid warping as an
effective post-processing algorithm for image deblurring for
Gaussian blur.

In our paper, we address the problem of image deblurring
with linear motion blur combined with out-of-focus blur
and propose a combined image deblurring algorithm that
has the advantages of both deconvolution and grid warping
approaches. The image is first deblurred by a deconvolution
algorithm and then the image edges are further sharpened by
grid warping approach.

II. BLUR MODEL

We use the following blur model:

PSF [r, σ, `, θ] = C[r] ∗ L[`, θ] ∗G[σ]. (1)

It is a combination of out-of-focus blur C[r], linear motion
blur L[`, θ] and other types of blur G[σ].

The shape of out-of-focus blur is camera specific. We model
it as a circular blur with radius r:

C[r](x, y) =

{
1
πr2 , x2 + y2 ≤ r,
0, otherwise.

Linear motion blur with length ` and direction φ is formu-
lated as:

L[`, φ](x, y) = L[`, 0](x cosφ− y sinφ, x sinφ+ y cosφ),

L[`, 0](x, y) =
1

`
θ(`/2− |x|)δ(y),

where δ(t) and θ(t) are Dirac and Heaviside functions respec-
tively: ∫ +∞

−∞
δ(t)f(t)dt = f(0),

θ(t) =

{
1, t ≥ 0,

0 t < 0.

We model the remaining blur (for example, an anti-aliasing
filter) as a Gaussian blur with parameter σ:

G[σ](x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
.

Some examples of modeled blur are presented in Fig. 2.

(a) r = 2, ` = 10 (b) r = 3, ` = 4 (c) r = 5, ` = 16

Fig. 2. Different blur kernels according to the model [?].

III. GRID WARPING

In this section we describe the idea of edge enhancement
using pixel grid transformation.

A. One-dimensional edge sharpening

The profile of a blurred edge is more gradual compared to
a sharp edge profile. In order to make the edge sharper its
transient width should be decreased (see Fig. 3).

(a) Edge profile (b) Typical image en-
hancement approach

(c) Warping approach:
pixels are shifted

Fig. 3. The idea of edge sharpening by grid warping.

For any edge profile g(x) centered at x = 0 its sharper
version h(x) can be obtained shifting the pixels towards the
edge center. The displacement function d(x) describes the
shift of a pixel with a coordinate x to a new coordinate
x+ d(x) [15]:

h(x+ d(x)) = g(x).

The warped grid should remain monotonic:

x1 < x2 ⇒ x1 + d(x1) < x2 + d(x2),

so the derivative of the displacement function should match
the following constraint:

d′(x) ≥ −1. (2)

Another constraint localizes the area of warping effect in
the edge neighborhood:

d(x)→ 0, for |x| → ∞.

The displacement function d(x) greatly influences the result
of the edge warping. On the one hand, the edge slope should
become steeper. On the other hand, the area near the edge
should not be stretched over some predefined limit to avoid
wide gaps between adjacent pixels in the discrete case.

The displacement function can be expressed by the proxim-
ity function [15]:

p(x) = d′(x) + 1.



Fig. 4. The shape of the proximity function (3).

The proximity function defines the distance between adja-
cent pixels after the image warping. This value is inverse to
the density value. If the proximity function p(x) is less than
1, then the area is densified at the point x. If the proximity
is greater than 1, then the grid is rarefied. For an unwarped
image p(x) ≡ 1.

We use the proximity function which is a difference between
two Gaussian functions [15]:

p(x) = 1− G[kσ0](x)−G[σ0](x)
G[kσ0](0)−G[σ0](0)

(3)

where σ0 corresponds to blur level and k > 1 controls the
size of rarefication area. We use k = 2. Fig. 4 demonstrates
the shape of the proximity function.

B. Two-dimensional algorithm

In two-dimensional case, the displacement of each pixel is
a vector ~d(x, y). Pixels are surrounded by multiple edges and
the calculation of displacements is not obvious.

The simplest approach to obtain the displacement for a
given pixel is to find the nearest edge, take a one-dimensional
section connecting the nearest edge pixel and the given pixel
and calculate the displacement of the section using one-
dimensional algorithm.

A more effective approach is to use all edges from the pixel
neighborhood and perform weighted averaging (see Fig. 5):

~d(P ) =

∑
Q∈N(P )∩{E}

w(P,Q) · ~n(Q) · d(x(P,Q))

∑
Q∈N(P )∩{E}

w(P,Q)
, (4)

where:
- d(t) is a one-dimensional displacement function;
- {E} is the set of edge pixels in the image;
- N(P ) is the neighborhood of a point P ;
- ~n(Q) = ~g(Q)

|~g(Q)| is the unit vector corresponding to the
edge profile (gradient) direction;

- x(P,Q) is the projection of the vector
−−→
PQ onto the edge

profile;
- w(P,Q) is the weight coefficient.

The size of the neighborhood corresponds to the support
range of the displacement function d(t). The weight coefficient
w(P,Q) is defined as

w(P,Q) = |~g(Q)| exp
(
−y(P,Q)2

2σ2
0

)
,

where y(P,Q) is the rejection of the vector
−−→
PQ onto the edge

profile direction:

y(P,Q)2 = |
−−→
PQ|2 − x(P,Q)2.
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(a) The displacement vector for
yellow pixel is calculated as a
weighted sum of displacement vec-
tors for each of the edge pixels in
the neighboorhood of the yellow
pixel.

 

(b) The resulting displacement vec-
tor field.

Fig. 5. An illustration for two-dimensional grid warping calculation. Blue
pixels belong to edges.

The advantage of the multi-edge algorithm compared to
the single-edge algorithm is the improved image quality due
to smoother vector field [16]. At the same time, single-edge
algorithm is significantly faster.

The multi-edge algorithm also supports handling individual
blur level in each pixel. In this case, the warping vectors are
calculated as:

~d(P ) =

∑
Q∈E(P )

w(P,Q) · ~n(Q) · d[Q](x(P,Q))

∑
Q∈E(P )

w(P,Q)
, (5)

The only difference between (4) and (5) is choosing indi-
vidual displacement function d[Q] for each pixel Q.

IV. EXPERIMENTS

The method has been evaluated on a set of images with
modeled linear blur.

A. Scenario

We took 24 reference images from TID database [17] and
applied linear blur (1) with random parameters in the following
ranges: σ ∈ [1, 5], ` ∈ [1, 16], θ ∈ [0, 2π]. We also added
Gaussian noise with random variance σn ∈ [2, 32]. A total
of 240 blurred images were generated, 10 samples per each
reference image.



We applied a deblurring algorithm followed by edge sharp-
ening using grid warping. The deblurring algorithm and warp-
ing were performed for blur parameters rB = r ∗ qB and
rW = r ∗ qW respectively, qB , qW ∈ (0, 1].

The images were deblurred using the state-of-the-art image
deconvolution algorithm based on Total Generalized Variation
(TGV) regularization [3]:

zR = argmin
v,z
‖Az − u‖2 + γ1‖∇z − v‖1 + γ2‖∇v‖1,

where A is the blur kernel, u is the input blurred and noisy
image, v is an auxiliary variable, z is the restored image, γ1
and γ2 are the regularization parameters that were optimized
for each image independently to maximize SSIM value.

In real applications, blur parameters are not given and have
to be estimated. In order to model blur kernel estimation errors,
we applied a distortion to known blur parameters: the values r
and ` were multiplied by random values from range [0.8, 1.2],
and a random value from range [−σπ3` ,

σπ
3` ] was added to the

angle θ.

B. Results

During the experiment, we calculated average PSNR and
SSIM values for different qB and qW combinations. The best
choice in all cases was to use qB = 1 to suppress the maximum
possible blur at the deconvolution stage. At the same time,
it can be seen that the deconvolution algorithm was unable
to completely suppress all the blur. The remaining blur was
effectively reduced by the grid warping algorithm.

Some examples of the obtained results are shown in Fig. 6
and Fig. 7.

Fig. 8 shows the dependence of PSNR and SSIM on qB
and qW values for difference noise levels.

In can be seen that the warping algorithm improves the
result of Total Generalized Variation algorithm. The increase
of PSNR and SSIM metrics may look insignificant. This is
caused by the fact that grid warping is applied only to small
area of the image containing edges and its contribution to
overall metric values is low. Nevertheless, the improvement
of edge sharpness is clearly visible.

We have also performed the same experiment for other
image deblurring algorithms including Wiener algorithm [18]
and BM3D deblurring [2] and have obtained the same results:
applying grid warping algorithm after deblurring improves the
image quality.

V. CONCLUSION

In this paper we have shown that image sharpening by the
grid wapring algorithm is an effective method for postprocess-
ing for linear motion deblurring algorithms.

The warping procedure does not amplify noise or introduce
ringing artifact. If an image deconvolution algorithm has a
parameter that specifies a balance between low risk of artifacts
and better sharpness, it is promising to firstly apply an image
deconvolution algorithm with a preference of a low risk of
artifacts and then perform edge sharpening by the grid warping
algorithm.

(a) Reference image (b) Blurred image. PSNR = 16.83,
SSIM = 0.5614

(c) Deconvolution. PSNR = 18.57,
SSIM = 0.7606

(d) Deconvolution + warping.
PSNR = 18.63, SSIM = 0.7664

Fig. 6. Application of the deconvolution and warping algorithms to ’house’
image fragment, the blur parameters are: r = 3, ` = 2, σn = 16.

(a) Reference image (b) Blurred image. PSNR = 18.05,
SSIM = 0.3729

(c) Deconvolution. PSNR = 20.27,
SSIM = 0.7520

(d) Deconvolution + warping.
PSNR = 20.27, SSIM = 0.7555

Fig. 7. Application of the deconvolution and warping algorithms to ’flower’
image fragment, the blur parameters are: r = 2, ` = 10, σn = 32.



Fig. 8. The dependence of average PSNR and SSIM values on qB and qW
for difference noise levels.
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