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Abstract—Numerous algorithms exist for the problem of de-
convolution of blurred images. But due to ill-posed nature of
deconvolution, many images still remain blurry after deblurring.
An edge sharpening algorithm is proposed in the paper to further
improve the quality of blurry images in edge areas. The method
is based on pixel grid warping, its main idea is to move pixels
in the direction of the nearest image edges. Warping allows
to make edges sharper while keeping textured areas almost
intact. Experimental analysis for different optical blur models
is performed to optimize the parameters of the proposed method
and to show its effectiveness.

Index Terms—Edge sharpening, Image deblurring, Grid warp-
ing, Optical blur

I. INTRODUCTION

Image deblurring is a challenging ill-posed problem of
finding a sharp image I0 from given blurred image IB using
the blur model

IB = I0 ∗H + n

where H is the blur kernel and n is additive noise. If
blur kernel H and noise n are known with sufficient preci-
sion, the deconvolution problem can be effectively solved by
regularization-based algorithms [1].

Unfortunately in practice there is usually very little in-
formation about H and n, and the blur kernel is to be
estimated. There are some fairly powerful techniques for blind
image deblurring [2], [3]. Non-uniformity of image blur, noise
and blur kernel estimation errors may significantly degrade
the result. It is not easy to find optimal parameters for a
compromise between smooth result with blurry edges and
sharp result with artifacts like ringing or noise amplification
when blur kernel is estimated with errors.

The aim of the paper is to develop a post-processing method
for enhancement of the results of existing image deblurring
algorithms. This algorithm should be stable to noise and errors
in blur kernel estimation.

In this paper, we present an image sharpening method
that performs an enhancement of a blurred image in the
neighborhood of image edges. The idea is to transform the
neighborhood of the blurred edge so that the neighboring
pixels move closer to the edge, and then resample the image
from the warped grid to the original uniform grid.

The warping approach is related to the morphology-based
sharpening [4] and shock filters [5], [6], [7]. But these methods

make the image appear piecewise constant which is effective
mostly for cartoon-like images. The proposed method is ap-
plied to edges locally so the textures are preserved a priori.
Also warping compresses the edge neighborhood at fixed rate
and does not make the image piecewise constant.

The warping approach for image enhancement was intro-
duced in [8]. The warping of the grid in that work is performed
according to the solution of a differential equation derived
from the warping process constraints. The solution of the
equation is used to move the edge neighborhood closer to the
edge, and the areas between edges are stretched. The method
has several parameters, and the choice of optimal values for
the best result is not easy. Due to the global nature of the
method the resulting shapes of the edges are often distorted.
In [9] warping is computed directly using the values of left
and right derivatives. In both methods [8] and [9] the pixel
shifts are proportional to the gradient values. It results in
oversharpening of already sharp and high contrast edges and
insufficient sharpening of blurry and low contrast edges. Both
methods also introduce small local changes in the direction
of edges and produce aliasing effect due to calculation of
horizontal and vertical warping components separately.

Application of grid warping method for the enhancement
of image deblurring methods was considered in [10], [11].
Nevertheless, they used the assumptions of the Gaussian
based grid displacement and Gaussian blur. In this work, we
improve their results by considering different blur kernels that
correspond to real optic blur and suggesting more effective
single-parameter displacement function.

II. OPTICAL BLUR

Optical aberration is a result of inaccuracy of light con-
vergence in optical systems that usually leads to image blur.
Different models were created to model this effect. The Seidel
aberration model is one of them [12]. It consists of five
kinds of optical aberrations, each having its own effect [13],
[14]: spherical aberration, astigmatism, defocus blur, radial
distortion and coma.

In our paper we consider three types of blur that are typical
for photographic images:

1. Gaussian blur that approximates spherical aberrations. It
is represented by a convolution with the Gaussian filter

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
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2. Circular blur

Cr(x, y) =

{
1, x2 + y2 ≤ r2,
0, otherwise.

3. Ring blur

Rr(x, y) =


0.25, x2 + y2 ≤ 0.75r2,

1, 0.75r2 < x2 + y2 ≤ r2,
0, otherwise.

The last two blur types correspond to out-of-focus blur.
It appears at the areas which are in front of or behind the
camera focal plane. It may be the result of such lens and
camera issues as front-focus and back-focus, when the camera
cannot set the focus plane properly. Also out-of-focus blur is
used intentionally to create an effect called bokeh, an artistic
technique in photography. In this case the blur kernel has a
shape of a circle with sharp edges.

The examples of real out-of-focus blur are shown in Fig. 1.
The kernels of modeled blur are shown in Fig. 2.

The results of this blur type is seen in the Figure 1.

(a) Object is in front of the focus
plane

(b) Object is behind the focus plane

Fig. 1: Examples of real out-of-focus blur.

III. GRID WARPING

In this section we describe the idea of edge enhancement
using pixel grid transformation.

(a) Gaussian kernel (b) Circular kernel (c) Ring kernel

Fig. 2: Blur kernels used in the paper.

(a) Typical image en-
hancement approach

(b) Edge profile (c) Warping approach:
pixels are shifted

Fig. 3: The idea of edge sharpening by grid warping.

A. One-dimensional edge sharpening

The profile of a blurred edge is more gradual compared to
a sharp edge profile. So in order to make the edge sharper its
transient width should be decreased (see Fig. 3).

For any edge g(x) centered at x = 0 its sharper version h(x)
can be obtained shifting the pixels from the neighborhood of
the edge towards its center. The displacement function d(x)
describes the shift of a pixel with coordinate x to a new
coordinate x+ d(x) [11]: h(x+ d(x)) = g(x).

The warped grid must remain monotonic (i.e. for any x1 <
x2 new coordinates must be x1+d(x1) ≤ x2+d(x2)), so the
displacement function should match the following constraint:

d′(x) ≥ −1. (1)

Another constraint localizes the area of warping effect far
from the edge center:

d(x)→ 0, |x| → ∞.

The displacement function d(x) greatly influences the re-
sult of the edge warping. On the one hand, the edge slope
should become steeper. On the other hand, the area near the
edge should not be stretched over some predefined limit to
avoid wide gaps between adjacent pixels in the discrete case.
The choice of the displacement function is discussed in the
following sections.

B. Grid warping for 2D images

The papers [10], [11] describe how grid warping for edge
sharpening is applied for 2D images.

1) Single-edge algorithm: The simplest algorithm is finding
the nearest edge for every pixel and apply the one-dimensional
algorithm using that edge (see Fig. 4). It consists of the
following steps:
1. Estimate the blur level (the average standard deviation of
Gaussian filter) for the edges.
2. For all pixels in the neighborhood of the edge compute the
distance x to the nearest edge point.
3. Calculate the displacement value d(x) and perform pixel
shift towards the edge.
4. Interpolate the image from the warped grid to the old
uniform grid.

The edge map at the input of the algorithm has a great
influence on the result of grid warping as only detected edges
will be sharpened. We use the result of Canny edge detection
[15] as the input of the algorithm. The result of image warping



Fig. 4: Displacements for two-dimensional grid warping. Thick
blue line represents the exact edge location, white circles
represent edge pixels, black circles represent pixels from the
edge neighborhood.

is highly dependent on the parameters of the Canny method
(σ and high threshold Thigh).

2) Multi-edge algorithm: Multi-edge algorithm performs
grid warping towards all edges in the neighborhood of the
processed pixel using weighted averaging of individual warp-
ing vectors for each edge pixel. The weights are proportional
to the distance to edge pixels, to gradient magnitude in edge
pixels and to angle between gradient direction and the line
connecting edge pixels and processed pixel:

~d(P ) =

∑
Q∈E(P ) w(P,Q)~n(Q)d((~n(Q), P −Q))∑

Q∈E(P ) w(P,Q)
,

where ~n(Q) = ~g(Q)
|~g(Q)| is the unit vector corresponding to edge

profile (gradient) direction, (~n(Q), P −Q) is the projection of
the vector

−−→
PQ onto the one-dimensional edge profile, E(P )

is the set of edge pixels Q in the neighbourhood of processed
pixel P and w(P,Q) is weight coefficient. The size of the
neighborhood is chosen in accordance to the support of the
displacement function d(x).

The weight coefficient w(P,Q) is defined as

w(P,Q) = |~g(Q)| exp
(
−|P −Q|

2 − (P −Q,~n(Q))2

2σ2
w

)
,

where the value |P − Q|2 − (P − Q,~n(Q))2 is the squared
rejection of the vector P −Q onto edge profile direction. The
value σw is chosen proportional to the blur level. For Gaussian
blur with parameter σ, we use σw = 2.5σ.

3) Interpolation: The idea of interpolation from the warped
grid to the uniform grid is as follows: the intensity of the image
at pixel P is computed as a weighted sum of intensities of all
points on the warped grid in the neighborhood of the pixel
(see Fig. 5c): for a given radius ρ and all neighboring points
N(P ) = {Q : |Q− P | ≤ ρ} the intensity of a warped image
Iw at P is computed as

Iw(P ) =

∑
Q∈N(P )

1
|P−Q|I(xk, yk)∑

Q∈N(P )
1

|P−Q|
.

We use the interpolation radius ρ = 1.5. Its size is
determined by the maximal distance between pixels after grid
warping. The interpolation step introduces small blur effect
but its influence on the sharpness improvement is very small.

(a) displacements (b) warped grid (c) interpolation

Fig. 5: Interpolation after grid warping

IV. DISPLACEMENT FUNCTION

We use the assumption that displacement functions should
be proportional to the blur level within the same blur type.
Let d0(x) be the displacement function corresponding to unit
blur. Then the displacement function for the same blur type
with blur parameter t should look as follows:

d(x) = td0(
x

t
). (2)

A. Models

Two models have been considered for the choice of the
displacement function.

1. The difference of Gaussian functions:

d1(x) = s
√
π
(
erf
( x
2s

)
− erf

(x
s

))
,

where
erf(x) =

2√
π

∫ x

0

e−t
2

dt.

This type of displacement function was applied to images
blurred with Gaussian blur [10], [11]. For unit Gaussian
blur the parameter s = 1 is used. For circular and ring
blur parameter s is to be estimated experimentally. One of
the drawbacks of this model is insufficient increase of edge
sharpness. Therefore, in this work, we suggest another model
that gives sharper edges.

2. Piecewise linear function:

d′2(x)[a, b, c] =


c
ax, |x| ≤ a,
c b−|x|b−a signx, a < |x| ≤ b,
0, |x| > b.

The parameters a, b and c define the width of densification
and rarefication areas and the steepness of the displacement
function. The strongest warping effect that meets the condition
(1) is achieved with c = −a. Therefore, we use the displace-
ment function with two parameters:

d2(x)[a, b] =

= d′2(x)[a, b,−a] =


−x, |x| ≤ a,
−a b−|x|b−a signx, a < |x| ≤ b,
0, |x| > b.



B. Finding optimal parameters of displacement functions
We have found optimal parameters for each analyzed dis-

placement function for each blur type. Due to the assumption
(2) there is no need to estimate the displacement function
parameters for each blur level. Instead we estimate the pa-
rameters corresponding to unit blur.

1) Image set: Test images were generated using 24 natural
images from TID2013 database [16]. Each reference image
was convolved with the mentioned above blur kernels with
different blur levels. The radius r of circular and ring blur
was within the range [1.5, 5] with the step 0.5. The parameter
σ of Gaussian blur was within the range [0.75, 2.5] with the
step 0.25.

2) Parameter optimization: The optimal parameters for
each blur type were obtained by error minimization:∑

k

‖uk − vk‖2 → min,

where ‖·‖2 is Euclidean norm, vk is the result of grid warping
applied to the blurred image, uk is the corresponding ground
truth image.

For solving the minimization problem for displacement
functions containing multiple parameters, the Nelder-Mead
algorithm was used. The number of iterations was limited
to 100, and the minimal step was set to 10−3 of the blur
parameter. The initial approximation was a = 1, b = 1, s = 1.
With these parameters the method stopped at about the 50-
th iteration because of the step size limitation. Various initial
approximations were taken to achieve the global minimum.

C. Generalization
During the experiments, it was found that the parameters a

and b of the function d2 were very different. At the same
time, the dependence of image quality on the parameter b
was insignificant. So we decided to add the third displacement
function model d3(x) with parameter b set to 3

2a:

d3(x)[a] = d2(x)[a,
3

2
a] =


−x, |x| ≤ a,
3a−2|x|

a signx, a < |x| ≤ 3
2a,

0, |x| > 3
2a.

V. RESULTS

A. Displacement function analysis
Table I shows the PSNR results for image sharpening by

grid warping using three models d1, d2, d3 for the considered
blur types. It can be seen that an application of the grid
warping algorithm to blurred images results in the increase
of image quality with model d2 showing the best results.
Compared to the model d2, the model d3 has almost the same
quality with unnoticeable visual difference. Gaussian-based d1
has slightly worse quality due to insufficient edge sharpening.

Taking into account the results, the rest of the experiments
in the paper are conducted with the model d3. The obtained
optimal values of the parameter a for the model d3 are the
following: for Gaussian blur a = 1.28, for circular blur a =
1.12 and for ring blur a = 1.16.
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Fig. 6: The decrease of PSNR values for incorrectly estimated
blur level. The ISNR — PSNR difference between blurred and
warped image is about 0.3 dB

B. Stability

One of the problems of image deblurring algorithms is the
strong dependence of the result on the estimation of blur
kernel. We have investigated what happens to the results of
the proposed algorithm when the blur parameter is estimated
incorrectly. The graph in Fig. 6 shows the difference between
optimal and obtained PSNR values depending on the relative
error of blur estimation for the test image set.

It can be seen that blur level estimation error does not
influence the stability of the proposed method. The grid
warping method still improves the image even with 40%
relative error.

C. Post-processing

We applied the image warping with the displacement
function model d3 as a post-processing algorithm for image
deblurring and TV image enhancement algorithms. The same
reference images from TID database [16] were used but the
scenario was different. The images were blurred with each
of three blur types (Gaussian blur, circular and ring blur) with
random blur parameter in the range [1, 5], then Gaussian white
noise with random standard deviation in the range [0, 10] was
added. After that we applied existing deblurring algorithms
followed by image warping using known blur level. PSNR
results are shown in Table III.

Figure 7 demonstrates visual quality. It is shown that grid
warping algorithm improves image quality in most edge areas
(green areas in SSIM difference images). At the same time,
small areas of degradation also exist (red areas in SSIM
difference images). Usually, the degradation occurs when the
edge becomes more sharp than in the reference image.

The execution time of image warping algorithm for 512×
512 image is about a second for Intel Core i7 processor.
Fast GPU implementation of the proposed algorithm is possi-
ble [19].



Blur Gaussian blur Circular blur Ring blur

param Orig d1 d2 d3 Orig d1 d2 d3 Orig d1 d2 d3

1.5 25.543 25.773 25.842 25.842 28.351 28.483 28.561 28.555 27.300 27.468 27.608 27.621

2.0 24.335 24.587 24.660 24.660 26.657 26.853 26.923 26.929 25.508 25.735 25.870 25.869

2.5 23.571 23.842 23.908 23.908 25.290 25.535 25.612 25.614 24.355 24.621 24.755 24.741

3.0 23.008 23.276 23.335 23.335 24.623 24.869 24.930 24.929 23.843 24.104 24.207 24.197

3.5 22.578 22.841 22.894 22.894 23.998 24.256 24.310 24.307 23.276 23.546 23.634 23.627

4.0 22.220 22.478 22.527 22.527 23.577 23.827 23.873 23.870 22.903 23.165 23.239 23.234

4.5 21.922 22.182 22.228 22.228 23.208 23.461 23.499 23.498 22.568 22.832 22.895 22.889

5.0 21.658 21.912 21.959 21.959 22.896 23.141 23.175 23.174 22.286 22.543 22.599 22.591

Aver 23.104 23.361 23.419 23.419 24.825 25.053 25.110 25.110 24.005 24.252 24.351 24.346

TABLE I: PSNR values for image warping for considered blur models and displacement functions for different blur levels.

Gaussian blur Circular blur Ring blur

Before After Before After Before After

Blurred and noisy images 23.63 23.94 26.13 26.38 23.70 24.06

Unsharp masking 23.08 23.36 24.91 25.08 22.80 23.05

TV regularization 23.68 23.69 23.27 23.30 22.60 22.60

Low-frequency TV reg. [17] 23.65 23.89 26.42 26.56 23.07 23.30

TVMM [1] 24.95 25.08 25.85 25.92 23.01 23.07

Lucy-Richardson [18] 24.37 24.51 25.52 25.67 24.44 24.56

Wiener [18] 24.96 25.17 24.97 25.09 23.87 23.98

MatLab blind deconvolution 24.29 24.44 25.57 25.72 24.43 24.56

Average 24.08 24.26 25.33 25.47 23.49 23.65

TABLE II: Improvement of PSNR values by grid warping algorithm after different image deblurring methods for test image
with added blur and noise

Gaussian blur Circular blur Ring blur

Before After Before After Before After

Blurred and noisy images 0.541 0.553 0.654 0.663 0.529 0.545

Unsharp masking 0.457 0.469 0.565 0.574 0.446 0.459

TV regularization 0.570 0.575 0.667 0.668 0.526 0.532

Low-frequency TV reg. [17] 0.519 0.527 0.660 0.664 0.486 0.496

TVMM [1] 0.684 0.687 0.692 0.694 0.601 0.602

Lucy-Richardson [18] 0.567 0.573 0.593 0.598 0.568 0.573

Wiener [18] 0.642 0.648 0.565 0.570 0.533 0.538

MatLab blind deconvolution 0.560 0.566 0.595 0.600 0.568 0.573

Average 0.567 0.574 0.624 0.629 0.532 0.540

TABLE III: Improvement of SSIM values by grid warping algorithm after different image deblurring methods for test image
with added blur and noise



Reference image Degraded image by circular blur
r = 2.92, noise = 3.82,

PSNR=26.31

Wiener method [18] Low-frequency TV regularization [17]
PSNR=26.47 PSNR=27.86

Wiener + warping Low-frequency TV regularization
PSNR=26.61 + warping, PSNR=27.98

SSIM difference after image warping.
Green areas corresponds to the improvement of SSIM.

Red areas corresponds to SSIM degradation.

Fig. 7: Image post-processing by grid warping algorithm.

VI. CONCLUSION

The proposed generalization of the grid warping method
inherits all the main advantages of the method [10], [11]. Its
use as a post-processing step enables to enhance the results of
existing image deblurring methods practically in all cases. No
artifacts like ringing effect or noise amplification arise.

At the same time, in this work, we have shown the effec-
tiveness of this approach for different blur kernels correspond-
ing to real optic blur and suggested more effective single-
parameter displacement function. This function is suitable for
all considered blur kernels.

The work was supported by Russian Science Foundation
grant 17-11-01279.
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