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Abstract—A new learning model for image resampling with
convolutional neural network is proposed. Its main idea is the
dataset preparation method for deep learning. The proposed
algorithm can work with noisy and noiseless images and provides
good quality for wide noise level range. The method was tested
using standard datasets and was also applied for retinal image
resampling.
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I. INTRODUCTION

Image interpolation is a classical problem of image pro-
cessing. Its goal is to recover a high-resolution image from
a single low resolution image. Image interpolation algorithms
are widely used in a large set of devices and applications, such
as medical image processing tools, where the input is often a
noisy low resolution image.

This problem is ill-posed since multiple solutions exist for
a given low-resolution image. So it is an underdetermined
inverse problem. Such problems are typically solved by adding
constraints based on prior information.

The simplest algorithms are general purpose linear interpo-
lation methods like bilinear, bicubic, and Lanczos interpola-
tion. These methods represent the neighborhood of each pixel
as a polynomial function [1]. They are very fast but do not
perform edge-directed interpolation. Usually, a combination
of artifacts (blur, ringing and aliasing) comes with linear
interpolation.

A large class of edge-directional image interpolation algo-
rithms use prior information about the images. These algo-
rithms assume that the edges look similar at different resolu-
tions. The method [2] improves linear interpolation by kernel
elongation along edges. It produces excellent results at straight
edges but does not perform well for image corners and textured
areas containing multiple directions. Algorithms EGII [3],
ICBI [4] and DCCI [5] consider two directions at each pixel
using a combination of two directional interpolation results.
Algorithm NEDI [6] uses self-similarity of the natural images
at different scales to calculate the interpolation coefficients.
It works well at both edges and corners but corrupts the
structures without self-similarity.

Regularization-based algorithms represent the image resam-
pling problem as a computationally expensive functional mini-
mization problem with data-fitting and stabilizer terms [7]–[9].

The stabilizer holds prior information about the image. Total
variation stabilizer is usually used. It smooths the image while
keeping the edges sharp.

Example-based strategy is used to find the image constraints
that cannot be easily expressed by mathematical models.
These methods use internal similarities in the same image
or learn mapping functions from the patches from low- and
high-resolution training images [10], [11]. The method family
SI [12] puts the 3× 3 patch into one of 625 classes and uses
individual interpolation kernel for each class.

Convolutional neural network that directly learns end-to-end
conversion between low- and high-resolution images [13] also
uses the mapping functions. In these methods all data of con-
volutional layers is fully obtained through learning with little
pre/post processing. During image upscaling these methods
don’t need to solve any optimization problems. Quality of the
resulted high-resolution images depends on the convolutional
model scale, neural network size and the number of iterations
during learning process.

The result of example-based image upscaling method
greatly depends on the training data. If the training data is
not sufficient, the result may become unstable: small changes
in the input image may result in high changes in the output
image. For example, if the image resampling algorithm has
been trained using high-quality image set, it will try to recover
the details from noise in case of noisy input image. This effect
is strongly unwanted for medical image processing where the
appearance of non-existing structures may produce incorrect
diagnosis. It also results in noise amplification that is highly
noticeable in video resampling.

In this work, we create a new learning model for image
resampling with convolutional neural network. The main idea
of the proposed model is the dataset preparation method for
deep learning. Simple taking noisy high-resolution images
as the reference images in the training set result in strong
instability and poor quality of the interpolated images. In our
approach noise is added only to low-resolution images. It
results in resampling quality improvement as well as noise
reduction.



II. PROPOSED METHOD

A. Network model

We use the same model for CNN as described in SR-
CNN method [13]. In this scheme, considering a single low-
resolution image, we first upscale it to the desired size using
bicubic interpolation, but we can still consider this image a
low-resolution image. After that we apply 3 layers, where the
first layer is a convolution of the input image with a filter of
size 9×9×64 plus bias B1 and an application of rectified linear
unit (ReLU) to this convolution. Here input is a grayscale
image and B1 is a vector of size 64. In other words, on the
first layer we apply 64 convolutions with 9 × 9 sized filters.
On the second layer we apply ReLU to the convolution of
first layer’s results with a filter of size 64 × 5 × 5 × 32 plus
bias B2, here B2 is 32-dimensional. The third layer is used
for image reconstruction. It is a convolution with 32× 5× 5
dimensional filter plus bias B3. All these operations form a
convolutional neural network, which we name F (Y,Θ), where
Y is a low-resolution input image, Θ is the network filters’ and
biases’ coefficients. So our goal is to recover a high-resolution
image from the low-resolution image using this network and
the result should be consistent to the noiseless images and
images with different levels of Gaussian noise.

B. Training method

We have to find the network parameters Θ producing the
appropriate result for images with and without noise. This is
achieved through minimizing the loss between reconstructed
images F (Y,Θ) and ground truth high resolution images. A
training image set containing high-resolution images {Xi}
and their matching low-resolution images {Yi} is used. To
get higher PSNR values as an objective metric, we use Mean
Squared Error (MSE) as the loss function:

L(Θ) =

N∑
i=1

| F (Yi,Θ)−Xi |2 (1)

Images with a lot of high-frequency information from the
target image class are taken as the ground truth images {Xi}.
In order to make the algorithm effective and stable to noisy
input images, we use the following method to generate low-
resolution images for scale factor s:

1. Add Gaussian noise with standard deviation σn.
2. Apply Gaussian filter with radius σs = σ0

√
s2 − 1 for

aliasing suppression, σ0 = 0.3.
3. Perform image decimation by taking each n-th pixel.
This process can be formulated as:

[Yi]x,y = [(Xi + nσn) ∗Gσs ]sx,sy.

III. EXPERIMENTS

Experiments have been performed for image resampling
with a factor of 2. The proposed method has been compared
with state-of-the-art image resampling algorithms: A+ [11],
original SRCNN [13], DCCI [5], SI-3 [12] and bicubic in-
terpolation. We have used a collection of 124 photographic
images of nature, buildings and humans (WebShots Premium

Collections, October 2007) as the high-resolution training
image set for the proposed method with noise level σn = 8.
The same image set has been used to train SI-3 algorithm. The
method A+ has been used as provided by its authors without
changes.

The sets Set5 and Set14 [13] have been used to demonstrate
the effectiveness of the proposed method. Gaussian noise has
been added to each image. The standard deviation of the noise
is increased uniformly from 0 to 10 with step 0.1.

The dependence of algorithm performance against noise
level is shown in Fig. 4 and Fig. 5. It can be seen that original
SRCNN algorithm trained on noiseless images produces low
quality results for noisy input images while the proposed
method outperforms state-of-the-art algorithms for both noisy
and noiseless images.

The Fig. 1 contains the average PSNR and SSIM results for
images from the test datasets for multiple noise levels.

The resampling results for ’clown’ image with noise σ =
3.4 are shown in Fig. 2. It can be seen that the proposed
algorithm effectively increases the image resolution. At the
same time, noise suppression is observed. The cause of this
effect is the use of training dataset containing noisy low-
resolution image patches with corresponding noiseless high-
resolution patches.

A. Retinal image upscaling

The CNN-based approach looks very important to be used
for retinal image processing and analysis. The problem of
retinal image resampling is often an important preprocessing
problem in order to make the evaluation consistent with images
in different sizes like in [14] where bicubic interpolation
method is used. And the diagnosis results can depend seriously
on the resampling method. Below in Fig. 3 two examples of
the retina resampling illustrate the difference of the CNN-
based and bicubic methods.

It is necessary to mention that the CNN-based retinal image
analysis algorithms like [15] started to outperform other clas-
sification algorithms. It looks promising to use the CNN-based
resampling approach within or together with these algorithms.

IV. CONCLUSION

The proposed algorithm performs high quality image up-
scaling as well as effective noise suppression. It looks very
promising to be used for medical image resampling within
CNN-based medical image analysis. The proposed algorithm
gives the best result compared to other resampling methods but
at the same time it is not fast enough for realtime applications.
It is about 10 times slower than other resampling methods
using mapping functions. Nevertheless, it can be expected that
in a couple of years it will be possible to use it in realtime
applications.
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SI-3 Cubic DCCI APLUS SRCNN Proposed
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

14baboon 23.467 0.777 23.104 0.754 23.195 0.757 23.181 0.772 22.828 0.764 23.579 0.783
14barbara 25.895 0.828 25.929 0.829 25.309 0.817 25.387 0.806 24.758 0.792 26.014 0.835
14bridge 26.309 0.864 25.958 0.855 25.85 0.851 25.954 0.857 25.572 0.848 26.429 0.868
14coastguard 27.455 0.802 27.508 0.799 27.435 0.795 27.041 0.792 26.434 0.778 27.593 0.807
14comic 25.172 0.92 24.364 0.904 24.797 0.912 24.969 0.916 24.668 0.911 25.548 0.926
14face 31.205 0.841 31.276 0.844 31.354 0.844 30.413 0.812 29.827 0.803 31.229 0.846
14flowers 28.727 0.891 28.061 0.887 28.27 0.889 28.306 0.87 28.008 0.861 29.232 0.898
14foreman 32.567 0.895 31.623 0.897 32.428 0.901 31.43 0.857 30.958 0.853 32.959 0.906
14lenna 31.4 0.851 31.177 0.858 31.445 0.86 30.541 0.814 30.029 0.803 31.666 0.858
14man 27.559 0.864 27.049 0.858 27.305 0.861 27.205 0.848 26.702 0.84 27.656 0.86
14monarch 31.172 0.873 30.091 0.877 30.664 0.881 30.255 0.821 30.163 0.811 32.097 0.88
14pepper 31.653 0.852 31.356 0.86 31.637 0.862 30.691 0.815 30.267 0.804 31.942 0.861
14ppt3 26.877 0.916 25.223 0.899 25.449 0.903 26.375 0.874 26.973 0.882 27.629 0.927
14zebra 29.314 0.915 28.322 0.917 28.541 0.913 28.951 0.906 27.627 0.894 28.937 0.916
5baby 32.513 0.876 32.65 0.885 32.618 0.885 31.548 0.835 31.026 0.829 32.621 0.885
5bird 33.141 0.93 32.663 0.934 33.026 0.937 32.311 0.904 31.666 0.902 33.317 0.941
5butterfly 27.742 0.952 25.86 0.943 26.773 0.951 27.357 0.941 27.399 0.938 29.047 0.959
5head 31.227 0.839 31.297 0.842 31.373 0.843 30.427 0.81 29.842 0.802 31.25 0.845
5woman 30.377 0.909 29.767 0.911 30.347 0.915 29.781 0.88 29.309 0.878 30.981 0.926
Average 29.146 0.873 28.593 0.871 28.832 0.872 28.533 0.849 28.108 0.841 29.459 0.880

Fig. 1. The average PSNR and SSIM results for the test datasets for resampling with a factor of 2.
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Bicubic DCCI [5]

SI-3 [12] A+ [11]

SRCNN [13] Proposed
Fig. 2. Application of image upscaling for ’clown’ image with noise σ = 3.4
with a factor of 2.

Low-resolution image

Bicubic result Proposed method
Fig. 3. The result of retinal image resampling.
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Fig. 4. The values of objective metrics against noise level for ’bird’ image
from Set5. The vertical axis is the metric value (PSNR or SSIM), the
horizontal axis is the noise level. The value 0 corresponds to noiseless images
while the value 100 corresponds to Gaussian noise with σ = 10.
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Fig. 5. The values of objective metrics against noise level for ’bridge’ image
from Set14.


