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Abstract—A method of enhancing the 3D structure of fundus
images has been developed. It is based on grid warping techniques
and ensures both denoising and vessel sharpening of fundus
images. The method has been tested with phantom translucent 3D
object of vessels processed using Tikhonov regularization method.
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I. INTRODUCTION

One of the main problems arising in ophthalmology is non-
invasive restoration of the 3D structure of human eye fundus
for a consequent diagnosis of diseases. Recently, a promising
adaptive optics approach was suggested in [1] to restore 3D
structure of human fundus ”in vivo”. It is based on the rapid
refocusing of imaging system. By properly varying the focal
length one can obtain a stack of images, each corresponding to
different depths of cross section. Having a sufficient amount of
sections, one can try to reconstruct the original 3D object by
known methods. Unfortunately, in most cases the result will
not be satisfactory. The fact is that images, captured in each
focal plane, contain true cross sections of the 3D object and,
moreover, defocused images of neighboring sections of the
depth, aberrations of eye optical system, fixation fluctuations,
distortions of light-sensitive sensors, etc. Thus, the problem is
to elaborate robust approach capable of obtaining a stack of
cross section images which are purified from such distortions.
Note that analogous approach in bio-microscopy is also known
as digital sectioning [2]–[4].

In this paper, we use the 3D object restoration process
and propose an image enhancement post-processing method.
It is based on applying denoising filter followed by image
sharpening using grid warping.

II. 3D OBJECT RESTORATION

In optical microscopy, the problem of 3D object restoration
is governed by the following operator equation [2]–[4]

I(x, y, z) = O(x, y, z)⊗H(x, y, z). (1)

Here, I(x, y, z) is the registered image, O(x, y, z) is the true
object to be found, H(x, y, z) — 3D point spread function
(PSF), ⊗ — sign of 3D convolution. Generally, there is only
finite number N of cross section images for vertical variable
z ∈ {z1, . . . , zN} available for 3D object reconstruction. Since

the vertical resolution of optical microscopy is significantly
smaller than the horizontal one we turn from (1) to the
following asymmetrical discrete form of (1):

Im(x, y, z) ≡ I(x, y, zm) =
N∑
n=1

O(x, y, zn) ∗Hn−m(x, y).

(2)
Here, {Im} is the stack of registered images, {On =

O(x, y, zn)} is the stack of true object cross sections,
Hn−m(x, y) = H(x, y, zn − zm)∆z, ∆z — distance be-
tween cross section planes with the indices n and m (n,
m = 1, 2, . . . , N ), ∗ is the sign of 2D convolution. Since
the problem of direct deconvolution and sectioning of 3D
object usually needs intense computations, Fourier transform
is applied (2) and the convolution theorem is utilized. As a
result, we obtain equations in Fourier images Îm, Ôm, Ĥm of
functions Im, Om, Hm for each 2D spectral variable (u, v):

Îm(u, v) =

N∑
n=1

Ôn(u, v) · Ĥn−m(u, v), m = 1, 2, . . . , N.

(3)
Obviously, (3) is a linear system of algebraic equations
at each point (u, v) for the found vector

−→
O (u, v) =

(Ô1(u, v), Ô2(u, v), . . . , ÔN (u, v)) and N × N matrix S of
coefficients

−→
H (u, v) = (Ĥ1(u, v), Ĥ2(u, v), . . . , ĤN (u, v)).

In operator notations (3) takes the form

S
−→
O =

−→
I . (4)

We use iterated Tikhonov regularization method [5] to
work with (4) in case of its right part containing distortions
mentioned above. The iterations start from

−→
O 0 = (0, 0, . . . , 0)

and are updated using the formula

−→
O k+1 = (E+µS∗S)−1

−→
O k+µ(E+µS∗S)−1S∗

−→
I , k = 1,K.

(5)
Note that the parameter µ > 0 and the number of iterations

K should be chosen according to the trade-off between a rapid
initial sectioning with the smallest number of iterations for a
rough visualization of layers at relatively large values µ and



Fig. 1. True 3-D object and its original cross sections with the numbers 3
and 10.

Fig. 2. Distorted images at cross sections 3, 10, and 19.

Fig. 3. Sectioning of the layer 3 with the number of iterations K = 40 and
µ = 0.1, µ = 0.01 and µ = 0.001.

thorough restoration with identifying the fundus texture due
to additional iterations applied for small µ [6].

We present results of sectioning for the phantom translucent
3D object of vessels with the number of layers N = 20. True
3D object and corresponding original cross-sections are shown
in Figure 1. The noise of light-sensitive sensors is modeled by
Poisson noise, which has been added to captured images {im}.
The typical noise level is about 2% corresponding to 100000
photons per unit intensity of the pixel. The distorted images
for the layers with the numbers 3, 10, and 19 are shown in
Figure 2. It is easy to see true cross sections distorted with
defocused near-depth layers.

Figure 3 shows the typical results of deconvolution with
various values of the parameter µ: good sectioning with
refining from near-depth layers and residual distortions caused
by Poisson noise taken into account. Since Poisson noise is
applied at each focal plane cross section independently, we
use special methods of three-dimensional post-processing for
suppression.

III. GRID WARPING FOR IMAGE SHARPENING

A. Introduction

Typical image sharpening algorithms try to improve the
high-frequency information of the image. The simplest deblur-
ring algorithm is unsharp mask method that simply amplifies
high-frequency information (see Figure 4):

Iα = αI + (1− α)(I ⊗Gσ),

where α is the amplification factor, Gσ is the 3D Gaussian
filter, σ is the scale parameter that defines the range of
frequencies to be amplified.

Regularization-based methods [7]–[9] use a parameter to set
a compromise between smooth result with blurry edges and
sharp result with artifacts.

(a) (b)
Fig. 4. The idea of edge sharpening by grid warping: (a) Grid warping: pixels
are shifted; (b) Typical deblurring approach: pixel values are modified.

Grid warping algorithms use another approach to make the
image sharper: instead of changing pixel values they transform
the pixel grid so that the pixels near the edge move towards
the edge centerline [10]. It makes the edge sharper, but does
not add noise or ringing effect.

The warping approach for image enhancement was intro-
duced in [11]. The warping of the grid is performed according
to the solution of a differential equation that is derived from
the warping process constraints. The solution of the equation
is used to move the edge neighborhood closer to the edge,
and the areas between edges are stretched. The method has
several parameters, and the choice of optimal values for the
best result is not easy. Due to the global nature of the method
the resulting shapes of the edges are sometimes distorted.

In [11] the warping map is computed directly using the
values of left and right derivatives. In both methods [11]
and [12] the pixel shifts are proportional to the gradient values.
It results in oversharpening of already sharp and high contrast
edges and insufficient sharpening of blurry and low contrast
edges. Both methods also introduce small local changes in
the direction of edges and produce aliasing effect due to
calculation of horizontal and vertical warping components
separately.

The work [10] overcomes the drawbacks of the meth-
ods [11] and [12]. It constructs the pixel density map that
defines the target pixel density after grid warping. The warping
vectors are found from a solution of Poisson equation. The
work [13] extends the grid warping algorithm for 3D image
sharpening and proposes a direct method for finding warping
vectors from the density map. Using pure 3D sharpening algo-
rithm instead of sharpening each slice independently increases
the quality of corners and planes that lie nearly parallel to the
slices.



Fig. 5. Example of proximity function for edge sharpening

In this section we present the key moments of the 3D grid
warping algorithm.

B. One-dimensional grid warping

We describe the pixel displacement vectors for one-
dimensional edge profile centered at x = 0 by the proximity
function p(x) : p(x) = 1 + d′(x) , where d(x) is the
displacement function d(x) : x→ x+d(x). The displacement
function can be calculated from proximity function using the
equation

d(x) =

∫ x

−∞
(p(y)− 1)dy. (6)

The proximity is the distance between adjacent pixels after
image warping. If the proximity function p(x) is less than 1,
then the area is densified at the point x (see Fig. 5). If the
proximity is greater than 1, then the grid is rarefied. For a
non-warped image p(x) ≡ 1.

The proximity function greatly influences the result of
the edge warping. On the one hand, the edge slope should
become steeper. On the other hand, the area near the edge
should not be stretched over some predefined limit to avoid
wide gaps between adjacent pixels in the discrete case. The
necessary conditions for density and proximity functions are
stated in [10].

We use the following proximity function constructed as the
difference of Gaussian functions

p(x) = 1 + α
Gσ(x)−Gkσ(x)

Gσ(0)−Gkσ(0)
, (7)

where Gσ = 1
σ
√
2π

exp
(
−x2

2σ2

)
, α is the strength of warping

effect, k is the parameter that controls the area of rarefication.
We use α = 1, k = 2. Parameter σ depends on the blur level
of the input image.

C. 3D grid warping

In the three-dimensional case the displacement is a vector
field ~d(x, y, z) which is connected to the proximity function
by the equation

p(x, y, z) = 1 + div ~d(x, y, z).

For known p(x, y, z) the displacement function is obtained
from the solution of the equation

~d(x, y, z) = ∇u(x, y, z),{
∆u = p(x, y, z)− 1,

u(x, y, z) = 0 at image borders.

We suggest the following method for calculating the
proximity function in the two-dimensional case using one-
dimensional proximity function p(t):

p(x, y, z) =

∑
(xe,ye,ze)∈N(x,y,z) w(xe, ye, ze)p(xn)∑

(xe,ye,ze)∈N(x,y,z) w(xe, ye, ze)
,

w(xe, ye) = Gσ(xt)|~g(xe, ye, ze)|,

where N(x, y, z) is the set of edge points in the neighborhood
of (x, y). The values xn and xt are projections of the vector
(x−xe, y−ye, z−ze) on the edge gradient vector ~g(xe, ye, ze)
and on its perpendicular. Edges are detected using Canny edge
detection algorithm with zero thresholds [14].

The solution of the equation can be found directly:

~d(x, y, z) =

∑
(xe,ye,ze)∈N(x,y,z)Gσ(xt)d(xn)~g(xe, ye, ze)∑

(xe,ye,ze)∈N(x,y,z)Gσ(xt)~g(xe, ye, ze)
.

Finally we perform interpolation on the non-regular pixel
grid. The work [10] proposes taking all neighboring pixels
(xk, yk, zk) of the pixel (x, y, z) and performing weighted
averaging

IR(x, y, z) =

∑
k I(xk, yk, zk)q(x, y, z, xk, yk, zk)∑

k I(xk, yk, zk)
,

where

q(x, y, z, xk, yk, zk) =

= exp

(
− (x− xk)2 + (y − yk)2 + (z − zk)2

2σ2
0

)
,

σ0 = 0.3

IV. EXPERIMENTS

We have used the following scheme for the improvement of
the 3D object reconstruction result for the phantom translucent
3D object of vessels with the number of layers N = 20:

1. Perform the interpolation in z direction to make the
resolution isotropic using bicubic interpolation.

2. Apply 3D Gaussian filter with σ = 3 to suppress the noise
and to smooth the effect of mixing the neighboring slices.

3. Perform 3D sharpening using grid warping with σ = 3
to reduce the blur effect from the Gaussian filter.

4. Return to the original resolution in z direction.
The results of 3D object reconstruction images are shown

in Fig. 6 and Fig. 7. The size of the used 3D images is 512×



512×50. Two models are considered: the first model contains
large vessels while the second one contains thin vessels. It can
be seen that the use of a higher value of Gauss filter parameter
results in stronger noise suppression and reducing the effect
of mixing the data from neighboring planes. At the same time,
very high Gauss filter parameter makes the image too blurred.
The experiments have also shown no difference in processing
the images obtained using different µ.

Input images

The result of post-processing:
Blur σ = 1.5, warping σ = 3

The result of post-processing:
Blur σ = 2.5, warping σ = 3

Fig. 6. Results of 3D image enhancement for large vessels model obtained
for µ = 0.01

V. CONCLUSION

Grid warping algorithm has been applied for enhancement
of the phantom translucent 3D object images of vessels. The
image of vessels had benn processed by Tikhonov regular-
ization method. We found that even small sigma significantly
suppresses the noise, and further increase of sigma leads to
smoothing the effect of mixing the data from neighboring
planes. The suggested method looks promising to be used for
fundus images enhancement obtained by different 3D imaging
technologies.

Input images

The result of post-processing:
Blur σ = 2.5, warping σ = 3

Fig. 7. Results of 3D image enhancement for thin vessels model obtained
for µ = 0.01
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