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Deblurred images post-processing
by Poisson warping
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Abstract

In this work we develop a post-processing algorithm which enhances the results of the existing image deblurring
methods. It performs additional edge sharpening using grid warping. The idea of the proposed algorithm is to
transform the neighborhood of the edge so that the neighboring pixels move closer to the edge, and then resample
the image from the warped grid to the original uniform grid. The proposed technique preserves image textures while
making the edges sharper. The effectiveness of the method is shown for basic deblurring methods on LIVE database
images with added blur and noise.
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I. INTRODUCTION

THERE are some fairly powerful techniques for image deblurring [1], [2], [3]. The typical problem of image
deblurring methods is finding optimal parameters for a compromise between smooth result with blurry edges

and sharp result with artifacts like ringing or noise amplification. In this work we present a new post-processing
algorithm for image deblurring with enhancement of edge sharpness.

We localize the area of interest to the neighborhood of the edges. The idea is to transform the neighborhood of
the blurred edge so that the neighboring pixels move closer to the edge, and then resample the image from the
warped grid to the original uniform grid.

The warping approach is related to the morphology-based sharpening [4] and shock filters [5], [6], [7]. But
these methods make the image appear piecewise constant which is effective mostly for cartoon-like images. The
proposed method is applied to edges locally so the textures are preserved a priori, also warping compresses the
edge neighborhood at fixed rate and does not make the image piecewise constant.

The warping approach for image enhancement was introduced in [8]. The warping of the grid is performed
according to the solution of a differential equation that is derived from the warping process constraints. The
solution of the equation is used to move the edge neighborhood closer to the edge, and the areas between edges
are stretched. The method has several parameters, and the choice of optimal values for the best result is not easy.
Due to the global nature of the method the resulting shapes of the edges are sometimes distorted.

In [9] the warping map is computed directly using the values of left and right derivatives. In both methods [8]
and [9] the pixel shifts are proportional to the gradient values. It results in oversharpening of already sharp and
high contrast edges and insufficient sharpening of blurry and low contrast edges. Both methods also introduce small
local changes in the direction of edges and produce aliasing effect due to calculation of horizontal and vertical
warping components separately.

II. ONE-DIMENSIONAL EDGE SHARPENING

In this section we describe the idea of a single edge enhancement using a coordinate grid transformation.

A. Grid warping

Compared to a sharp edge profile, the profile of a blurred edge is more gradual. So in order to make the edge
sharper its transient width should be decreased (see Fig. 1).
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a. Proposed approach: b. Typical deblurring approach:
pixels are shifted pixel values are modified

Fig. 1. The idea of 1D edge sharpening

For any edge g(x) centered at x = 0 its sharper version h(x) can be obtained shifting the pixels from the
neighborhood of the edge towards its center. The displacement function d(x) describes the shift of a pixel with
coordinate x to a new coordinate x+ d(x): h(x+ d(x)) = g(x).

The warped grid should remain monotonic (i.e. for any x1 < x2 new coordinates should be x1 + d(x1) ≤
x2 + d(x2)), so the displacement function should match the following constraint:

d′(x) ≥ −1. (1)

Another constraint localizes the area of warping effect near the edge center:

d(x)→ 0, |x| → ∞.

The displacement function d(x) greatly influences the result of the edge warping. On the one hand, the edge slope
should become steeper. On the other hand, the area near the edge should not be stretched over some predefined
limit to avoid wide gaps between adjacent pixels in the discrete case.

B. The proximity function

The displacement function d(x) is connected with the proximity of image pixels p(x): p(x) = 1 + d′(x).
The proximity is the distance between adjacent pixels after image warping. This value is inverse to the density

value. If the proximity function p(x) is less than 1, then the area is densified at the point x. If the proximity is
greater than 1, then the grid is rarefied. For an unwarped image p(x) ≡ 1.

Fig. 2. Example of proximity function for edge sharpening

The constraint (1) leads to non-negativity of the proximity function. Also high values of the proximity function
should be avoided, because it will be hard to perform interpolation in rarefication areas if the rarefication is too
strong.

We use the proximity function p(x) to calculate the displacement function: d(x) =
x∫
−∞

(p(y)− 1)dy.
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C. Edge model

The choice of the displacement function is based on the assumption that the blurred edge Eσ(x) can be
approximated by an ideal step edge H(x) convolved with Gaussian filter with known parameter σ [10]:

Eσ(x) = [H ∗Gσ](x), H(x) =

{
1, x ≥ 0,

0, x < 0,

where Gσ(x) = 1√
2πσ

e−
x2

2σ2 .

D. Choosing the proximity function

Consider the following physical model: the point x is a particle of fixed mass situated on the slope Eσ(x). The
particle is connected by a spring to a vertical axis. Due to the force of gravity the spring is deformed until the
particle reaches equilibrium at the point x + d(x). This model ensures that the shape of the edge is not distorted
and the grid transformation is smooth.

This model produces the following displacement function:

d(x) = −κG′σ(x).

The constant κ > 0 controls the level of the grid warping. With the increase of the value of κ the edge becomes
sharper. The value κ is limited by the constraint (1)

κ ≤ 1/G′′σ(0).

According to this model, the proximity function takes the form:

p(x) = 1− κG′′σ(x) (2)

This approach has a limitation: it controls the areas of densification and rarefication simultaneously.
We approximate the proximity function (2) with the difference of two Gaussian functions in order to control the

areas of rarefication and densification independently:

p(x) = 1 + κ(Gσ1
(x)−Gσ2

(x)), σ2 > σ1. (3)

Parameter σ1 controls the width of the densification area while parameter σ2 controls the width of the rarefication
area. When σ2 → σ1, the proximity function (3) will converge to (2).

Observations show that with σ1 < σ, where σ is the width of the edge, the width of the densification area
becomes narrower (see Fig. 3c) while with σ1 > σ the width of the densification area becomes wider than the
width of the edge (see Fig. 3d). Using σ1 ≥ σ gives reasonable results. High values of σ2 results in too wide
rarefication area (see Fig. 3f).

Typically, images contain many edges, so it is desirable to localize the area of warping effect to the neighborhood
of the edges, therefore the values of parameters σ1 and σ2 should be as low as possible.

For the edge blurred with σ, we use σ1 = σ. Parameter σ2 is taken as kσ1 = kσ. Good results are obtained
with 1.5 ≤ k ≤ 2. To achieve the strongest sharpening effect, we use the maximal values of κ that matches the
constraint (1):

κ = 1/ (Gσ1
(0)−Gσ2

(0)) .

III. IMAGE SHARPENING USING WARPING

A. Two-dimensional extension

In the 2D case the displacement is a vector field ~d(x, y). There are some obvious constraints (see Fig. 4).
1) The shapes of the edges cannot be warped, so ~d(xe, ye) = 0 for each edge point (xe, ye).
2) Also, there cannot be any turbulence: rot ~d = 0. Since rot∇u ≡ 0, the displacement field is assumed to be

gradient of some scalar function u(x, y): ~d(x, y) = ∇u(x, y).
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a. Input edge b. Approach (2)

c. σ1 << σ d. σ1 >> σ

e. σ1 ∼ σ, σ2 = 1.1σ1 f. σ1 ∼ σ, σ2 = 3σ1

Fig. 3. Edges warped using p(x) (3) with different parameters. Blue function is the model edge with some noise. Red function is the result
of warping. Green line is the proximity function.

3) The edge neighborhood points situated farther from the edge cannot move closer to the edge than the
neighborhood points situated nearer to the edge. This condition can be described in terms of the constraint (1)
where 1D derivative corresponds to a divergence of 2D vector field

div ~d ≥ − 1

and the proximity function takes the form:

p(x, y) = 1 + div ~d(x, y).

Fig. 4. Displacements directions for 2D grid warping. The blue line represents the exact edge location, white circles represent edge pixels,
black circles represent pixels from the edge neighborhood.

Since div∇ ≡ ∆, where ∆ is a Laplacian, the warping problem can be posed as a Dirichlet problem for the
Poisson equation in the area of the image:{

∆u = p(x, y)− 1,

u(x, y) = 0 at image borders.
(4)

The second constraint here is the boundary condition: the displacements at image borders should be equal to
zero.

B. The warping algorithm

In order to get the same results as in the 1D case and to keep the edge pixels unwarped, the proximity value
should be equal to the 1D proximity function depending on the distance to the edge. However, the distance to the
closest edge ρ as an argument of the proximity function p(ρ) is not efficient as it may produce gaps between close
edges. Also it blurs edge ends.
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We suggest the following method for calculating the proximity function:

p(x0, y0) =

∑
(x,y)∈E(x0,y0)

p(xn)Gσ(xt)|~g(x, y)|∑
(x,y)∈E(x0,y0)

|~g(x, y)|

where E(x0, y0) is the set of edge points in the neighborhood of (x0, y0).
The values xn and xt are projections of the vector (x0 − x, y0 − y) on the edge gradient vector ~g(x, y) and on

the tangent to the edge respectively.
The function p(xn) is the 1D proximity function, Gσ(xt) is the weighting function with standard deviation equal

to the edge’s blur σ.
We solve the equation (4) by Gauss-Zeidel method and perform interpolation at the original pixel grid using the

method described in [?].

C. Interpolation

The idea of interpolation from the warped grid to the uniform grid is as follows: the intensity of the image at pixel
(i, j) is computed as a weighted sum of intensities of all points on the warped grid in the neighborhood of the pixel
(see Fig. 5c): for a given radius r and all neighboring points {(xk, yk) : dk =

√
(i− xk)2 + (j − yk)2 ≤ r}Kk=1 the

intensity of a sharpened image Is at (i, j) is computed as

Is(i, j) =
K∑
k=1

1

D k
I(xk, yk), where Dk = dk/

K∑
l=1

dl.

We use the interpolation radius r = 1.5.

a. displacements b. warped grid c. interpolation

Fig. 5. Grid warping and interpolation

IV. RESULTS AND EXPERIMENTS

The edge map at the input of the algorithm has a great influence on the result of grid warping as only detected
edges will be sharpened. In our work we use the result of Canny edge detection [11] with zero thresholds and a
predefined radius.

The example of the proposed method is shown on Fig. 6. It can be seen that the edges become better and the
overall quality is improved. Nevertheless, small SSIM degradation regions exist. They correspond to the initially
blurred regions of the image. Of course, an unwanted sharpening effect for the blurred areas of the original image
can appear but it is a rare case.

The proposed method was tested on 29 images from LIVE database [12]. The images were blurred with Gaussian
kernel with random radius in the range [1, 6], then Gaussian white noise with random standard deviation in the range
[0, 10] was added. The degraded images were deblurred using standard MATLAB deblurring methods with known
parameters of blur and noise levels used for degrading the original images. After that we warped the deblurred
images using the known blur level. Table I represents the result. Instead of our method postprocessing by methods
[8] and [9] did not improve the results of used deblurring algorithms.

Preliminary experiments with automatic estimation of the unknown edge width [13] also show the enhancement
of deblurring methods.
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Method No warping With warping
Blurred and noisy images 22.84 23.25
Unsharp masking 23.00 23.36
TV regularization 23.30 23.40
Low-frequency TV reg. [15] 23.08 23.18
TVMM [2] 23.31 23.48
Lucy-Richardson [14] 23.83 23.99
Wiener [14] 24.00 24.17
MatLab blind deconvolution 23.79 23.96

TABLE I
AVERAGE PSNR VALUES FOR IMAGES FROM LIVE DATABASE WITH ADDED BLUR AND NOISE

V. CONCLUSION

The advantages of the proposed algorithm are as follows:
1. It can be efficiently used as a post-processing method for global image deblurring methods.
2. No artifacts like ringing effect or noise amplification are introduced.
3. Unlike morphological methods and shock filters, the resulting images look natural and do not inevitably

become piecewise constant.
4. It can be used as a standalone method of image sharpening. It is a good choice in the presence of strong noise

and complex and non-uniform blur kernel.
The proposed algorithm is not posed as a global image deblurring method. It enhances only image edges

neighborhood and practically does not affect image textures.
Demo software can be found at http://imaging.cs.msu.ru/soft
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Reference image Degraded image, PSNR=25.99

Wiener method [14], PSNR=27.05 Wiener + warping, PSNR=27.21

SSIM difference after image warping for Wiener method
Green areas show improvement of SSIM, red areas show SSIM degradation.

TVMM [2], PSNR=28.66 TVMM + warping, PSNR=28.72

SSIM difference after image warping for TVMM method.
Green areas show improvement of SSIM, red areas show SSIM degradation.

Fig. 6. Example of the proposed warping algorithm


