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Abstract

The paper presents a new adaptive full reference metrics for the
quality measurement of image enhancement algorithms. The idea
of the proposed metrics is to find areas related to typical artifacts of
image enhancement algorithms. Two types of artifacts are consid-
ered: blur and ringing effect. The concept of basic edges is used to
find areas of these artifacts which are invariant to image corruption
and image enhancement methods. The metrics are illustrated with
an application to image resampling and image deblurring.

Keywords: Image metrics, image enhancement, blur artifact, ring-
ing artifact.

1. INTRODUCTION

Restoration of high-frequency information of an image is a com-
mon problem in image processing. High-frequency information is
corrupted of either lost during various image corruption and degra-
dation procedures like downsampling or blurring. It is not possible
to completely reconstruct lost high-frequency information, there-
fore artifacts appears in restored images. Typical artifacts of image
enhancement algorithms caused by loss of the high frequency in-
formation are blur and ringing effect near sharp edges.

Development of image metrics is important for the objective analy-
sis of image resampling, deringing, deblurring, denoising and other
image enhancement algorithms.

Image metrics perform comparison of the ground truth image and
the restored image. Since the ground truth image is unavailable in
most cases, the simulation approach is used. In this approach, arti-
fact free images are corrupted to simulate the effect which is aimed
to be suppressed by the being evaluated image enhancement algo-
rithm. Then the corrupted images are restored using the given al-
gorithm and compared to the corresponding reference images using
image metrics.

There exist large variety of image metrics ranging from simple
but fast approaches like MSE, PSNR to more complicated metrics
based on modeling the human visual system [1]. Most of image
metrics can provide the estimation of perceptual image quality but
they cannot be used to develop effective image enhancement al-
gorithms because they do not focus on typical artifacts caused by
the corruption of high-frequency information. Two image enhance-
ment algorithms can give the same metrics values but the results
can be very different if the first algorithm processes edges well and
corrupts non-edge area while the second one corrupts only edges.
Such an example for image deblurring is shown in Fig.1.

There also exist no-reference quality estimation algorithms that
measure specific artifacts like blur and ringing for certain image
restoration algorithms like image compression [2, 3, 4] but they are
not applicable to the general case.
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Figure 1: Deblurring of the noisy blurred image by the unsharp
mask with two different parameters. PSNR values are the same, but
the edges are sharper in the left result image while the non-edge
area is better in the right image.

In this paper, we develop metrics for image enhancement algo-
rithms. The proposed metrics are focused on finding the areas re-
lated to the considered typical image enhancement artifacts: edge
blur and ringing effect. According to the parameters of image cor-
ruption and image enhancement method, it is possible to find the
areas related to these artifacts and calculate image quality metrics
in these areas separately. This information can be useful to help find
the most problem areas of the given image enhancement algorithm.

An algorithm to find the area related to ringing effect is proposed
in [5], but this algorithm has limitations and cannot be applied for
most of image enhancement algorithms. Our proposed method is
based on the concept of basic edges — sharp edges which are dis-
tant from other edges thus surviving after image corruption. The
perceptual metrics for these areas are suggested.

The proposed metrics estimate the quality of different image en-
hancement methods by analyzing the image quality in the areas of
blur and ringing effect. We use the simulation approach so image
degradation type and its parameters are considered to be known.

In section 2, we analyze blur and ringing effect for image enhance-
ment of low-resolution images, blurred images and images with
ringing effect. In section 3, we find the edges suitable for image
quality estimation. In section 4, we introduce our metrics to esti-
mate the quality of image enhancement methods. Applications of
the proposed metrics to image resampling and image deblurring are
shown in section 5.

2. ARTIFACT ANALYSIS

Since both blur and ringing effect are the results of loss of high
frequency information, these effects should be considered together.
If all frequencies above 1

2p
Hz are truncated in Fourier transform,

ringing oscillations appear and edges are blurred. The length of sin-
gle ringing oscillation and edge width are equal to p pixels. The ex-
ample of high frequency truncation is shown in Fig. 2. Although the
number of ringing oscillations is unlimited for the high frequency
cut off, usually no more than 1-2 oscillations are noticeable.
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Figure 2: Appearing of blur and ringing effect after high frequency
information cut off for p = 4.

In practice, the high frequency information is usually corrupted but
not completely absent, and the cut off frequency cannot be obtained
directly from Fourier transform. In this case additional investiga-
tions are required to estimate blur and ringing effect parameter. This
parameter can be predicted from image degradation type a priori.

Low-resolution images are constructed using downsampling proce-
dure which includes low-pass antialiasing filtering followed by the
decimation procedure. During the decimation with scale factor s,
the frequencies greater than 1

2s
are discarded. The cut off is not

ideal because of two-dimensionality of the image. For any linear
image resampling method producing blur and ringing effect, its pa-
rameter p depends only on scale factor s and p = s. For non-linear
image resampling methods we use p = s too.

In image deringing the parameter p is already known from the def-
inition of the problem.

Blurred images are the results of low-pass filtering followed by
adding noise. We consider Gaussian blur with known radius σ and
a noise with Gaussian distribution and standard deviation equals to
d. There is no frequency cut off, and parameter p depends on im-
age deblurring method. For unsharp mask, we use p = kσ, where
2.5 ≤ k ≤ 3.

In the appendix, these results are confirmed experimentally.

3. BASIC EDGES

Blur and ringing effect appears near sharp edges. But any sharp
edge cannot be used for image quality analysis. Some edges can
disappear or can be displaced after image corruption. If these edges
are used for blur and ringing analysis, the results will be incorrect.

There are two effects observed in images with corrupted high fre-
quency information:

1. Masking effect. If an edge with low gradient value is located
near an edge with high gradient value, it will disappear after image
blurring.

2. Edge displacement. If two edges with the same or close gradi-
ent values are located near each other, they will be displaced after
image blurring.

To find the edges which do not suffer from masking effect and edge
displacement during image corruption, we put the following condi-
tions:

1. An edge point is not masked by nearby edges

gi0,j0 > max
i,j

φ((i− i0)2 + (j − j0)2), (1)

where gi,j is the image gradient modulus in pixel (i, j), φ(d) =

exp
(
− d2

2p2

)
.

2. The distance from the edge point to the nearest edge is greater
than a thresholdR. This operation is performed using mathematical
morphology [6]. We use R = 3p.

3. The gradient modulus gi,j is greater than a threshold g0. The
condition is used to reduce the influence of noise to blur and ringing
effect.

We call the edges passed all these conditions as basic edges and the
edges passed only the first condition as non-masked edges.

4. IMAGE QUALITY METRICS

After detection of basic edges, we perform image segmentation.
According to the analysis of the profile of the step edge after high-
frequency cut-off with parameter p (see Fig. 2), we divide the image
into three sets:

1. The set M1 containing all pixels for which the nearest non-
masked edge is a basic edge and the distance to this edge is less
or equal than p/2. Blur effect is the most likely to appear in this
set.

2. The set M2 containing all pixels for which the nearest non-
masked edge is a basic edge and the distance to this edge is less
or equal than 2p and greater than p/2. Ringing effect is the most
likely to appear in this set.

3. The set M3 of all pixels with the distance to the nearest non-
masked edge greater than 2p. This set contains no non-masked
edges and corresponds to flat and textures areas in the image.

The example of finding these sets is shown in Fig. 3.

To measure image quality, we calculate metrics values in the sets
M1,M2 andM3. Any metrics can be used here. We use SSIM [7]
due to its simplicity and good correlation with the perceptual image
quality:

SSIM(M,u, v) =
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)
,

where µu, µv are the averages of u and v respectively, σ2
u, σ2

v —
variances, σuv - the covariance of u and v, L is the dynamic range
of the pixel-values (typically this is 255), k1 = 0.01 and k2 = 0.03.
The values µu, µv , σ2

u, σ2
v , σuv are calculated only in the set M .

Now we are ready to introduce the image quality value vector for
image u with ground truth image v and given blur-ringing parame-
ter p:

QV (u, v, p) = (Q1, Q2, Q3, Q4) =

= (SSIM(M1, u, v), SSIM(M2, u, v),

SSIM(M3, u, v), SSIM(u, v)). (2)
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Figure 3: The result of basic edges detection for p = 4.

QV value is a vector containing SSIM values calculated in the
sets M1, M2, M3 and in the entire image. Higher values mean
better image quality. The sets M1, M2, M3 are constructed for the
image v with given parameter p.

5. APPLICATIONS

The proposed metrics are demonstrated by its application to con-
struct combined algorithms for image resampling and image de-
blurring.

We consider the case when there are two image enhancement algo-
rithms which give relatively the same values of some general pur-
pose metric but produce different artifacts: the first algorithm has
strong blur artifact while the second one has strong ringing artifact.
This difference is detected by the proposed metrics.

The combined algorithm is constructed as a linear combination of
two image enhancement algorithms u, v

wi,j = a(di,j)ui,j + (1− a(di,j))vi,j ,

where a(d) is the weight coefficient depending on the distance to
the closest non-masked edge di,j in the blurred image.

Consider u and v such that QV1(u) < QV1(v) and QV2(u) >
QV2(v). In this case we use

a(d) =


0, d < p

2
,

2d−p
p
, p

2
≤ d < p,

1, d ≥ p.

The result for combination of bicubic interpolation and sinc inter-
polation for the problem of image resampling is shown in Fig. 4.
To the problem of image deblurring, the result for combination of
unsharp mask and regularized total variation (TV) deconvolution in
low-frequency domain is shown in Fig. 5. In both cases the com-
bined method shows better SSIM calculated in the whole image
than two given methods. Also Q1, Q2 and Q3 values of the com-
bined methods are better than the corresponding best values of the

given methods. This make possible to say that the results of combi-
nation based on the results of the proposed metrics are better than
the results of the methods used for combination.

Low-resolution image

Blurred (σ = 3) and noisy Bicubic interpolation
QV = (0.9255, 0.9987,

0.9996, 0.9831)

Sinc (ideal) interpolation Combined method
QV = (0.9423, 0.9978, QV = (0.9424, 0.9986,

0.9989, 0.9837) 0.9996, 0.9862)

Figure 4: Application of the proposed metrics to improve the re-
sults of image resampling methods.

6. CONCLUSION

New full-reference metrics for quality measurement of image en-
hancement algorithms were developing. These metrics were appro-
bated on image resampling and image deblurring. It looks promis-
ing for combining two different image enhancement algorithms to
obtain better result.
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8. APPENDIX

We have performed frequency analysis of different image enhance-
ment algorithms to confirm the preposition from Section 2 that pa-
rameter p can be estimated from image degradation method. For
every image we calculate the cumulative spectrum function A(w)
(CSF):

A(w) =

2π∫
0

|f̂(w cos θ, w sin θ)|2dθ,

where f̂(w1, w2) is linearly interpolated discrete Fourier transform
of the image f .

The analysis consists in calculating the difference between CSFs
A(w) for reference images from the set of standard images (ba-
boon, cameraman, house, goldhill, lena, peppers) and CSFs of en-
hanced images.

Frequency power functions for the different methods of image re-
sampling, deringing and deblurring are shown in Fig. 6. It can be
seen that the change of the curve shape happens in the expected
point w = 1

2p
= 1

4
.

Image resampling (s = 2):
ideal (zero filling); regularization based
Lanczos3; interpolation with low
bicubic; regularization parameter [8].

Image deringing (p = 2):
Gaussian blur, σ = 1; TV projection.

Image deblurring (σ = 0.7):
TV regularization in unsharp mask, α = 6.

low-frequency domain;

Figure 6: Cumulative spectrum functions differences for different
image corruption and enhancement methods.
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