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Super-resolution problem is posed as an inverse deconvolution problem. Fast non-iterative super-

resolution algorithm based on this approach is suggested. Different super-resolution problem 

statements for the cases of exactly and inexactly known transform operator were considered. 

Introduction 

The problem of super-resolution (SR) is to recover a high-resolution image from a set of several degraded low-

resolution images. This problem is very important in human surveillance, biometrics, etc. because it can 

significantly improve image quality. 

There are two groups of video SR algorithms: learning-based and reconstruction-based. Learning-based 

algorithms enhance the resolution of a single image using information on the correspondence of sample low- 

and high-resolution images. Reconstruction-based algorithms use only a set of low-resolution images to 

construct high-resolution image. More detailed introduction into video SR problems is given in [1], [2]. 

The majority of reconstruction-based algorithms use camera models [3] for downsampling the high-resolution 

image. The problem is posed as a set of equations 

NkuzA kk ,...,2,1,  , (1) 

where z  is reconstructed high-resolution image, ku  is k-th low-resolution image, kA  is a downsampling 

operator which transforms z  to ku , N  is a number of low-resolution images. The operator kA  can be generally 
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represented as nzHFDHzA atmkcamk   [3], where atmH  is atmosphere turbulence effect, kF  is a warping 

operator like motion blur or motion deformation, camH  is camera lens blur, D  is a decimation operator, n  is a 

noise. We model atmH  and camH  as a single Gauss filter H , and the operator kA  takes the form 

HzDFzA kk  . (2) 

Warping operator kF  can be calculated, for example, using motion calculation in base points and interpolation 

in other points [4], [5]. Variational optical flow estimation approaches are also widely used (see [6], [7], [8], 

[9]). 

Problem definition 

We consider the superresolution problem (2) for z  and ku  given on the discrete set },:),{(  jiji . 

Warping operator kF  is modeled as a set of correspondences between coordinates of points of source and 

warped image ),()~,~(: ,, jiyxF k
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),(),)(( sysxzyxDz  , where s  is the scaling factor. Combination of kF  and D  results in 
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Here we renamed )~,~( ,,
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The image z  is defined on discrete set ),( ji , but the coordinates ),( ,,

k

ji

k

ji yx  are not grid points, so we use 

operator H  for both filtering and interpolation: 
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, (4) 

where   is chosen in accordance with scale factor s . We use 14.0 2  s . 

The problem (1) does not have a solution in most cases. We replace it with an error minimization problem 
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where 
2

  is standard Euclidian norm. 

Using the notation (3), operator zAk  (2) takes the form 



),(),)(( ,,

k

ji

k

jik yxHzjizA  ,  

and the super-resolution problem (5) takes the form 
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By changing multiple indexes with single index, we rewrite the formula (6) and define the problem as 
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The problem (7) is ill-posed, so regularization methods [10] are used: 
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with a stabilizer ][z . Iterative method for solving (8) is discussed in [2]. In this paper, a non-iterative 

algorithm for solving (7) is proposed. 

Adaptive deconvolution 

We consider the problem of deconvolution on discrete 1D set for Gauss filter G  
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The discrete convolution looks as 

GzHzv  , 
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The problem of deconvolution is to reconstruct z  from given convolution result Hzv   

vHz 1 .  

Inverse operator 1H  can be constructed using Fourier transform: Gzv ˆˆˆ  , Gvz ˆ/ˆˆ  , and z  can be found as a 

convolution of v  with inverse Fourier transform of Ĝ/1 . Nevertheless, operator 1H  is unbounded in the 

continuous case. Thus in the discrete case it significantly amplifies noise for a noisy data. To avoid this, we use 

a finite adaptive filter 
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(9) 

Coefficients jc  in (9) are chosen to minimize 
2

Cvz  . Filter length k  is chosen in a way to make 

deconvolution fast, but precise enough. We use 3k . 

In two-dimensional case, we process consequently the rows and the columns of the image. 

For given super-resolution problem (5), we convolve low-resolution images with Gauss filter and calculate 

coefficients jc  from given set of images. We seek for 
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Experiments have shown that adaptive filter (9) does not significantly amplify noise. It depends on given 

images. If the images are noisy, then filter coefficients are smoothed and noise level does not significantly 

increase after deconvolution. This also means that regularization term (8) is not necessary because adaptive 

filter (9) is automatically tuned to noise level. 

We have compared adaptive filter with unsharp mask GvGvvz  )( . Unsharp mask shows practically 

the same results, but it takes more time to estimate its parameters ),(  . 

 Problem solution 

If the points ),( nn yx  in (7) are grid points, then deconvolution method using adaptive filter can be used. But in 

general case coordinate values nn yx ,  are not discrete. So, we use the following algorithm: 

1. Calculate the values of Hz  at all grid points ),( ji  using Gauss interpolation (4). 

2. Perform deconvolution using adaptive filter. 

In Figure 1, the proposed super-resolution method is illustrated for test video sequence in comparison with 

other image resampling and super-resolution methods. 

    

a) Single frame interpolated b) Regularization-based super- c) The proposed video super- d) Regularization-based single 



using nearest neighbor method resolution [2] resolution method (7). frame image interpolation [11] 

Fig. 1. Super-resolution results using 4 input images and scale factor s=4. 

Problem discussion 

The proposed super-resolution method (7) shows very good results if the warping operator kF  is calculated 

precisely. If it has errors, the solution becomes unstable. To avoid this, we pose the super-resolution problem 

(1) in the presence of errors as follows: 
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We make single-image super-resolution for every image and then calculate an average image. 

The approach (11) results in blurred image, but without artifacts caused by warping operator errors. 

This approach is illustrated in Figure 2. 

  

a) The super-resolution 

method (7) 

b) Super-resolution for 

unstable data (10) 

Fig. 2. Super-resolution results for 4 input frames and factor s=4 for inexact warping operator. 

Conclusion 

Fast non-iterative method for image super-resolution has been suggested. The method shows very good results 

if the warping operator is exactly estimated like in the case of only sub-pixel shifts in the given video sequence. 

Special version of the super-resolution algorithm has been suggested for the case of inexact warping operator. 
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