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Abstract

The paper presents an adaptive image deblurring
method with ringing control. Images are split in analogy
with unsharp mask into low- and high-frequency compo-
nents. Edges are sharpened in low-frequency domain us-
ing deconvolution with Total Variation constraint. High-
frequency information is amplified using ringing level con-
trol.

1. Introduction
The problem of image deblurring is to restore high-

frequency information from blurred image. It is posed
mathematically as reconstruction of the initial image z from
blurry and noisy observation u using the model

u = Hz + n, (1)

where Hz = H ∗ z is a convolution with a blur operator, n
is a noise. In blind deconvolution problem, H is unknown
and has to be estimated.

The problem of image deblurring is often posed as an
inverse problem to (1). This problem is ill-posed, and regu-
larization method [1, 10] is used to solve it:

zreg = arg min
z

(‖Hz − u‖22 + αΩ[z]),

where Ω[z] is a stabilizer which puts imposes additional
constraints to the solution, α is a regularization parame-
ter. The simplest choice of the stabilizer is the Total Vari-
ational functional TV [z] =

∫ |∇z|∂z. It was first used for
the problem of image enhancement by Rudin, Osher and
Fatemi [9].

One of the main problems of image regularization meth-
ods is the choice of regularization parameter α. Low values
result in ringing and noise amplification while high values
result in high frequency details loss [2].

Linear unsharp mask zM = Hu + q(u − Hu) is used
in non-iterative deblurring for Gauss blur model [5]. It am-
plifies the high-frequency information (u − Hu) by factor

q. Unsharp mask has many advantages. It is a linear space-
invariant filter, which is computationally inexpensive and
can be easily implemented as a spatial-domain convolution.
The main disadvantage of this method is strong noise am-
plification and ringing effect.

We present an image deblurring algorithm which com-
bines both regularization method and unsharp mask and
uses ringing level control to suppress ringing effect. The
key idea of the proposed method is to split the image
into low-frequency image and high-frequency image, ap-
ply regularization-based sharpening to low-frequency im-
age and combine the sharpened low-frequency image with
amplified high-frequency image.

2. The Proposed Algorithm
We consider the problem of image deblurring for uni-

form Gaussian blur H = G, where the Gauss radius σ is
unknown and has to be estimated.

The proposed algorithm consists of the following steps:
1. Estimate Gauss radius σ of the blur operator G. This

is performed using the analysis of the edge width (see Sec-
tion 3).

2. Split the given image u into low-frequency uL and
high-frequency uH components. Low-frequency image uL

is constructed by applying the blur operator G to the given
image u: uL = Gu. High-frequency image is calculated as
the difference uH = u−Hu.

3. Apply regularization-based sharpening S to the low-
frequency image zL = SuL (see Section 4).

4. Amplify high-frequency information by a factor q and
add it to the sharpened low-frequency image zR = SuL +
quH . Parameter q is chosen in accordance with ringing level
function (see Section 5).

3. Gauss radius estimation
3.1. Edge width analysis

The term ’edge width’ does not have a certain definition.
The simplest approach used in [4] is to find local minimum



and local maximum near the edge center. This approach
does not provide stable results for blurred and noisy edges.
In [11], the edge is modeled by a special function, but it
does not fit our needs.

For one-dimensional edge

f(x) =





f0, x ≤ x0,

f0 + (f1−f0)(x−x0)
x1−x0

, x0 < x < x1,

f1, x ≥ x1

(2)

we define edge width as w(f) = x1 − x0.
To define edge width w for an arbitrary edge f(x), we

approximate it by the edge f(x) (2). We seek for minimum
f0 and maximum values f1 of f(x) in a neighborhood of
the edge center, reducing for simplicity the edge to the case
f0 = 0, f1 = 1.The size of this neighborhood is chosen a
priori and represents the maximum considered edge width.

Next we seek for coordinates of intersections of y =
f(x) with y0 = 1/4 and with y1 = 3/4, draw a line through
these points and find x0 and x1 as it is shown in Fig.1. In the
case of multiple intersections we take the average of inter-
section points. We consider the obtained value as the edge
width estimation.
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Figure 1. Edge width estimation. For the shown case, the estimated
edge width w is 4.3 pixels.

3.2. The dependence of edge width on Gauss radius
of the blur operator

To estimate Gauss radius σ of the blur operator G, we use
edge width analysis. We performed an experiment to find
the dependence of edge width w on Gauss radius σ. Gauss
blur operators with different σ were applied to the images
from the test image set and the average edge width w was
calculated for every σ. The results are shown in Fig.2.

The function w(σ) is close to the linear function for
σ ≥ 3. So we approximate the function w(σ) by the linear
function w(σ) = 1

kσ and empirically calculate the coeffi-
cient k. For the test image set, the value k is 0.45. We used
the test image set consisted of standard images ’House’,
’Lena’, ’Boat’, ’Peppers’ and ’Barbara’.
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Figure 2. The dependence of edge width w on Gauss filter radius
σ for the test image set.

3.3. Gauss radius estimation for 2D images

Using the equation w(σ) = 1
kσ, we can estimate the

radius
σ(w) = kw

for a single edge with edge width w. But in 2D case, there
are lots of edges, and the estimated edge width is different
for different edges. It is caused, for example, by noise, non-
uniform blur or different edge sharpness.

In this paper, we consider the problem of Gauss radius
estimation for the case of uniform blur. To analyze the edge
width, only sharp and isolated edges are used to reduce the
influence of nearby edges and noise.

We use the following algorithm:
1. First, we perform edge detection and extract edge nor-

mal cross-sections fi, i = 1, 2, . . . , N for strong isolated
edges. We use the algorithm from [7].

2. Next we estimate edge widths wi = w(fi) for all
cross-sections and calculate σi = kwi.

3. Then estimate σ as the value of the highest density of
{σi} distribution.

4. Regularization-based Sharpening
TV regularization shows good results for the problem of

image deblurring. The first advantage is that it does not
smooth the edges. The resulting image tends to piece-wise
flat solution in the case of increasing regularization parame-
ter. The second advantage is that TV is closely related with
ringing artifact [6]. It makes possible to control ringing ar-
tifact by regularization parameter.

4.1. Total Variation

In one-dimensional case, Total Variation functional is de-
fined as

TV (f) =
∫ ∞

−∞
|f ′(x)|dx.



In the discrete case −∞ < . . . < xk−1 < xk < . . . <
∞, it looks as:

TV (f) =
∞∑

k=−∞
|f(xk)− f(xk−1)|.

For two-dimensional image, we use the following repre-
sentation:

TV (z) =
∑

i,j

|zi+1,j − zi,j |+
∑

i,j

|zi,j+1 − zi,j |.

4.2. TV Deblurring

If we consider the step edge (2) and its blurred version,
it is obvious that TV of the edge does not depend on the
radius of Gaussian blur and is equal to |f1 − f0|. Thus,
we assume, that deblurring of a blurred step edge does not
change its TV .

Real images contain not only step edges but also fine de-
tails, so TV deblurring cannot be applied to the problem
of image deblurring directly. Nevertheless we consider the
low-frequency component uL of the given image as an im-
age which consists only of step edges so we apply TV de-
blurring to it:

zL = arg min
TV (z)≤TV (uL)

‖G(Gz)− uL‖22,

where G(Gz) and uL are calculated using our σ(w) estima-
tion.

The example of low-frequency edge sharpening is given
in Fig.3.

Low-frequency TV deblur
information result

Figure 3. TV deblur of the low-frequency image component

5. High-frequency Amplification
The high-frequency information uH is amplified with a

factor of q and then added to the result of sharpened low-
frequency image zL. The main problem is that high q results
in noise amplification and ringing artifact. We consider only
the problem of ringing artifact here.

The main idea is to calculate image ringing level. Ring-
ing level is estimated using scale-space TV analysis of
strong isolated edges [7, 8].

Parameter q is increased until this value reaches the ring-
ing threshold of the ringing level function.

6. Results

The results of the proposed algorithm are illustrated with
the image ’house’ from the test image set and with the im-
age ’fish’. To estimate the quality of deblurring method,
we analyze the quality in edge areas using special metrics
from [7].

BEP (Basic Edges Points RMSE) value calculates the
square root of the average square error in the edge points
area. BEN (Basic Edges Neighborhood RMSE) value cal-
culates the error in edge neighborhood. It is the area where
ringing effect usually appears. These metrics are illustrated
in Fig.4. White area is the area of the BEP calculation,
grey area is the area of the BEN calculation, dark grey
lines show the edges.

Reference image BEP (white) and BEN (gray) areas

Figure 4. BEP and BEN metrics illustration.

The original images were blurred using Gauss filter with
radius σ = 3. The proposed method and unsharp mask were
applied to these images. The results are illustrated in Fig.5.
The proposed deblurring method shows better BEP than
unsharp mask, but it slightly increases the BEN level.



Reference images

BEP = 18.38, BEN = 4.16 BEP = 24.50, BEN = 6.89
Blurred images

BEP = 13.42, BEN = 4.15 BEP = 18.70, BEN = 6.43
Unsharp mask results

BEP = 10.28, BEN = 4.68 BEP = 14.07, BEN = 6.45
Results of the proposed method

Figure 5. Application of the proposed method to the problem of
image deblurring.

It can be seen that the proposed deblurring method shows
good results in edge areas while unsharp mask works better
in non-edge areas. To get the best results, we combine the
results of the proposed method zR and of unsharp mask zM :

zC(P ) = (1− α(P ))zR(P ) + α(P )zM (P ),

where α(P ) is a function of distance ρ(P ) from the point P
to the nearest edge:

α(P ) =





0, ρ(P ) ≤ w/4,

4ρ(P )/w − 1, w/4 < ρ(P ) < w/2,

1, ρ(P ) ≥ w/2,

where w is the estimated average edge width.
The results of the combined method are shown in Fig.6.

Here we used Canny edge detector [3] with radius 1.

BEP = 10.05, BEN = 4.15 BEP = 13.38, BEN = 6.44

Figure 6. Application of the proposed combined method to the
problem of image deblurring.

7. Conclusion

The suggested adaptive image deblurring method with
ringing control shows promising results comparing with un-
sharp mask method. The future work will include an ad-
justable procedure of low-frequency domain edges sharpen-
ing. High-frequency information amplification using ring-
ing level control also needs additional investigations.
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