Combined linear resampling method with ringing control
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Abstract

New method to combine different linear interpolation algorithms is
suggested. It uses total variation analysis to suppress ringing arti-
fact of the combination. This method enables to construct fast edge
adaptive resampling methods. Its usage is illustrated with combi-
nations of sinc, Papoulis and bicubic interpolation algorithms using
new image metrics for interpolation methods quality analysis. The
method can be also used to combine non-linear methods.

Keywords: [Image interpolation, ringing artifact, deringing, total
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1. INTRODUCTION

Every linear resampling method has its own trade-off between three
types of artifacts: ringing, aliasing and blur, illustrated in Fig.1.
For example, ’ideal’ interpolation method which reconstructs the
image by a sampling theorem processes edges good, but introduces
strong ringing effect. On the other hand, bilinear interpolation adds
blur and aliasing to the edges, but does not add ringing artifact.
The detailed overview of linear image interpolation methods can be
found in [1].
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Figure 1: Typical artifacts of linear interpolation methods.

One of the ways to improve the quality of linear interpolation meth-
ods is to perform additional postprocessing to suppress the artifacts.
Lots of general purpose deblur and deringing algorithms were de-
veloped. Most of the deblurring algorithms are based on decon-
volution problem with regularization [2, 3]. In [4], image is de-
composed into cartoon-like component and texture component and
different methods are used to process these components. Regular-
ization approach is also used for image deringing [5].

Another way is to embed artifact suppression method in the inter-
polation algorithm. It can be done by a method that constructs high-
resolution images using a combination of two interpolation meth-
ods, where one of the methods works well in the edge area while
the other method shows better results in the rest of the image. At
the same time the edge detection procedure to detect edge areas is
time consuming and often suffers from noise. In our approach, we
use total variation (TV) analysis instead of edge detection.

TV value is closely related with ringing effect [6]. If TV increases
after interpolation, we assume that the method causes ringing effect.

2. INTERPOLATION

We consider only the case of one-dimensional interpolation. For
two-dimensional images, we perform interpolation first by rows,
then by columns.

Generally, linear interpolation of a function F'(z) given on a dis-
crete set {x; = ih} looks as:
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where K (z) is an interpolation kernel.
In this work the following interpolation methods are used:

1. Sinc (or ’ideal’) interpolation. If the input function satisfies the
condition of the Shannon-Kotelnikov sampling theorem, then it can
be reconstructed using (1) with

K(z) = sincz = ST
g
2. Bicubic interpolation:
1, forz =0,
K(z) = (a+2)|z]* = (a+3)|z|> + 1, for0< |z| <1,
" alz|® — 5alz* + 8a|z| — 4a, forl < |z| < 2,
0, otherwise.
We use bicubic interpolation with a = —0.5.

3. Interpolation using Papoulis sampling theorem [7, 8]. If the orig-
inal signal is represented as a series of its samples and its first and
second derivatives (we call it Papoulis-2), it can be reconstructed as
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We do not know the derivatives of F'(x) in sampling points, so we
use the following approximation:

Fli+1)—F(i—1)

F'(i) = 5 :
F (i) = F(i+2) — 22(1') +F(i-2)

Thus, the formula (2) can be interpreted as linear interpolation
method (1) with
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KO0)=1,K(1)=K(-1)=K(2)=K(-2)=0.
The kernels of these methods are illustrated in Fig.2.



Figure 2: Interpolation kernels for sinc interpolation (left graph),
bicubic interpolation (right graph) and Papoulis-2 interpolation
(bottom graph).

3. COMBINED METHOD

We construct the interpolated function f(z) as a combination of
two functions

f(@) = a(z)s(x) + (1 — a(z))r(2), Q)

where r(x) is the interpolation of F'(x) using the method which
produces ringing effect but processes edges well, and s(z) is the
result of interpolation method which produces smooth image with
smaller ringing effect.

3.1 Total Variation Approach

The coefficient o(x) in (4) is calculated using the analysis of total
variation (TV) of F'(x) and r(z). In one-dimensional case, TV
functional is defined as

TV(f,a,b):/ |f (z)|dz.

In the discrete case {x; = ih}, it is computed as:
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+(iah — a)[f(iah) — f((ia — 1)h)| +

+(b —inh)[f((io + 1)h) — f(ivh)], ©)
where i, = [#] (the less integer value greater than or equal to
a/h), iv = | L] (the greater integer value less than or equal to
b/h).

We calculate the ratio between TV of the input image row (column)
and TV of its interpolation

TV (r,x — nh,x + nh)
TV (F,z — nh,x + nh)’

k(z) = (6)

where the parameter n defines the half-size of the window of TV
calculation. Experiments have shown that good results are obtained
with n = 3.

If we consider the problem of interpolation of F'(z) on a discrete
grid with interpolation factor ¢, we do not need to construct the
continuous function r(x), and the formula (6) takes the form

k(z) = TV (R,x — nh,x + nh)
T TV (F,z —nh,z +nh)’

where R(z) is r(z) defined on the grid {z; = ih/q}.

We use the following criteria for o(z) computation:
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1. If k(x) > B, we assume that the ringing effect is noticeable, and
we take a(x) = 1.

2. If k(z) < A, we assume that the ringing effect is unnoticeable,
and we use a(x) = 0.

3.if A < k(z) < B, we use az) = kng.

Parameters A and B are the thresholds.

3.2 Threshold Analysis

We estimate the parameters A and B experimentally using min-
imization the 2D image quality metrics from [9]. BEP (Ba-
sic Edges Points RMSE) value measures the root of the average
square error in edge points area. BEN (Basic Edges Neighborhood
RMSE) value calculates the error in edge neighborhood where ring-
ing effect usually appears. As an example, sinc interpolation shows
good BEP and bad BEN while bicubic interpolation results in
good BEN and bad BEP. To find a balance between these two
metrics, we use BE(Q) metrics:
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where BE P, and BE N, are the normalization constants. These
constants do not affect the difference between BEQ values of dif-
ferent images. We choose BE P, and BE N, as the minimal val-
ues of BEP and BEN respectively of the results of interpolation
methods for the given image.

BEQ

The proposed combined method was analyzed with different pairs
of interpolation methods. The analysis consisted in choice of
threshold values A and B by minimization of the BEQ value.

Experiments show that the parameters A and B depend on the used
pair of interpolation methods. We have calculated threshold values
A and B for combinations of sinc, Papoulis-2 and bicubic inter-
polation methods on a set of standard test images Lena, Barbara,
Peppers, Boat, House. The results are presented in table.1.

Interpolation Methods | threshold A | threshold B
Sinc + Bicubic 1.10 1.31
Sinc + Papoulis-2 1.09 1.19
Papolis-2 + Bicubic 1.20 1.32

Table 1: Optimal threshold values A and B for different combina-
tions of interpolation methods.

3.3 Method speed-up
The performance of TV calculation of the proposed method can be
improved using the additive property of TV

for a < b < c¢. This means, that if we shift the window of TV
calculation by x, we need just to update the previously calculated
TV value

TV (f,a+z,b+z) =TV (f,a,b)+TV (f,b,b+z)-TV(f,a,a+z).



4. RESULTS

The proposed method is illustrated with house’ image from the
test image set in Fig. 3. The values of MSE, BEP, BEN and BEQ
metrics for these images are shown in Tab. 2. It can be seen that the
combined method keeps both BEP and BEN metrics low. Despite of
slightly increased MSE value, the results of the combined method
looks better than of pure sinc or bicubic methods. BFE(Q metrics
correlates with the perceptual image quality.
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Figure 3: Illustration of the proposed method by the test image
with sinc and bicubic methods. Grey lines in BEP and BEN areas
images are the edges.

MSE BEP BEN | BEQ
Sinc interpolation 109.5 | 14.124 | 4.426 | 0.181
Papoulis interpolation | 112.1 | 14.247 | 4.032 | 0.059
Bicubic interpolation | 125.4 | 15.178 | 3.971 | 0.128
Sinc + Bicubic 112.1 | 14.181 | 3.970 | 0.029
Sinc + Papoulis 109.4 | 13.894 | 4.039 | 0.025
Papoulis + Bicubic 113.3 | 14.302 | 3.981 | 0.046

Table 2: The values of metrics for the images from Fig. 3.

5. CONCLUSION

It was shown that total variation analysis concept enables to com-
bine different linear interpolation algorithms to suppress ringing ar-
tifact. New image metrics for interpolation methods quality anal-
ysis were used to numerically evaluate the results of the proposed
method. Experiments show that the combined method parameter
selection using these metrics correspond well to visual image qual-
ity enhancement. Fast and effective implementation of the proposed
method which is useful for embedded solutions has been suggested.
The algorithm can be extended using the combination of more than
two methods which are not necessary linear.
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