
Image Processing Algorithms Integration System 

Andrey A. Kravtsov*, Dmitry V. Yurin** 
* Moscow State University, Faculty of Computational Mathematics and Cybernetics, Lab. of Mathematical Methods of Image Processing. 

** Institute of Computing for Physics and Technology  
andrey.a.kravtsov@gmail.com, yurin_d@inbox.ru

 
Abstract 
An approach of building complex image processing algorithms 
using independent blocks is presented. It is assumed that blocks 
are written in C++ programming language and the integration is 
performed due to means of Microsoft .NET Framework. A 
method of presentation of separate algorithm as a .NET dynamic 
loading library is described. The main advantage of this approach 
is ability of high-level algorithm construction and without the 
need of code recompilation. A new image object format 
suggested. This format is very convenient for data interchange 
between classes running in different dll's. It also eliminates the 
need of image copying from one container into another. For 
system demonstration purposes an implementation of straight line 
detection algorithm described. 
Keywords:  image processing, image filtering, computer vision, 
algorithms integration, reusing of code. 

1. INTRODUCTION 

Modern image processing algorithms are very complex and 
consist of numerous low-level subroutines. It is common practice 
that authors of articles describe their algorithms as pseudo code 
that has small size [4-7]. This shows that an algorithm can be 
presented as a super-algorithm consisting of simple blocks with 
low-level subprograms such as Fourier or Hartley transforms, 
interpolation, filtering, search of maximums, convolutions etc. An 
ordinary approach in programming such a super-algorithm is to 
implement blocks in C++ language and to integrate these blocks 
in common C++ program which can also contain graphical user 
interface code [8]. The choice of programming language for 
implementing low-level subroutines is in most cases obvious 
(C++ language implied). But it is not true for high-level algorithm 
because the most part of overall computational time relates to 
low-level subroutines. Implementation of super-algorithm is just 
call of several (not more than ten) such subroutines.  
Combining of all blocks in a common C++ project requires 
common data formats as well as programming of all code parts in 
similar style. Moreover, various difficulties can occur by using 
ready components (algorithms) shared in internet for public 
access. These are different image representation types, name 
conflict etc. It is also often a problem to extract “pure algorithm” 
from the project, because low-level subroutines, super-algorithm, 
graphical user interface implementation details, data formats, 
exception handling are mixed. 
Thus a solution for problems described above is to write low-level 
subroutines in C++ programming language (i.e. to make blocks of 
reusable code), combine them using a scripting language. GUI 
implementation depends on used operating system. At the 
moment the most natural approach for programming GUI for 
Windows OS is .NET Framework [3]. Integration with C++ 
modules is possible due to Managed C++ programming language. 
MC++ allows creating unified modules with .Net interface 

accessible from all .Net programming languages. But inside these 
modules developer can use all C++ native means like pointers, 
templates, polymorphism etc. It is important to note that JScript 
and VBasicScript (Microsoft.Vsa, Microsoft.JScript, 
Microsoft..VBScript namespaces) interpreters are available in 
.Net framework. 
The goal of this paper is to develop an approach for programming 
low-level subroutines using efficient C++ language, combine 
these subroutines in a common super-algorithm using scripting 
languages and eliminate copying images from one container into 
another one only to provide compatibility between modules 
written by different people. Implementing high-level algorithm in 
a scripting language makes code more readable and accessible for 
editions without the need of recompilation.  

2. SYSTEM ARCHITECTURE 

Fig.1. depicts overall system architecture.  

Main application

Interpreter
(Script engine)

High-level 
interaction

Библиотека
БиблиотекаLow-level module

Script

 
Fig.1. System architecture. 

The main application is written in one of .Net programming 
languages. It can be either an existing program or newly 
developing solution. 
The interpreter, or scripting engine, is a C# class which can 
interpret JScript (or VBScript.NET) scripts.  Input data for the 
script engine are JScript-code, list of dynamic loading libraries, 
list of namespaces and variables if any. A big advantage is the 
possibility to pass a variable of any .Net framework object type. 
Script has JScript.Net instructions: objects instantiation, function 
calls and so on. Some pluses of using scripting language should 
be noted:  firstly, all low-level implementation details are 
invisible for main application-developer. So we get a black box 
which takes some input variables and returns a result. 
Implementation details are not important thus. Secondly, 
JScript.Net is an easy, but in the same time very powerful 
programming language. It provides all capabilities supported by 

mailto:andrey.a.kravtsov@gmail.com
mailto:yurin_d@inbox.ru


.Net framework. Thirdly, there is no need to recompile any part of 
the system after script editing. This means given approach allows 
user to program and chose algorithm implementation details.  The 
only restriction which has user is the interface of interaction with 
the main application. 
A low-level module is a dynamic loading library (dll) containing 
Managed C++ class – a wrapper for C/C++ code. Using of a 
managed class ensures module unification and algorithm 
implementing in the native language causes high speed efficiency.  

3. IMAGE OBJECT 

For modeling images a new format was developed. This format is 
compatible with ENVI system [9], which supports a wide range of 
data types and is easy to use. It should be noted that our format 
supports DIB and BMP image formats. For image processing 
algorithms the origin of images is not important, but access type 
to pixels is essential.  Because of this an approach was selected 
that allows working with images created by various external tools. 
Particularly if you write a program in C# and use our system, you 
don’t need to copy C# image into another container. 
Inner structure of images is described by field of the 
ImageDescriptor class: 
Width – image width in pixels; 
Height – image height in pixels; 
Bands – number of image color components (e.g. 1 for grayscale, 
3 for color); 
DataType – sample data type. Supported types: Byte (DataType = 
1), unsigned short (16 bit, DataType = 12) and float32 (DataType 
= 4); 
Interleaving – bands alternation way. Supported values: BSQ 
(bans sequentional) – all pixel data of first color band are 
followed by all pixel data of the second color band etc; BIL (band 
interleaving by line) – alternation of color bands line by line; BIP 
(band interleaving by pixel) – alternation of color bands pixel by 
pixel; 
NLS (next line shift) – a value that should be added to pointer for 
shifting to the same position on image, but one line below. NLS 
can differ from Width. 
NBS (next band shift) – a value that should be added to pointer 
for shifting to the same position on image, but on the next color 
band. 
DataPtr – pointer to image data row.  
Instances of ImageDescriptor class don’t contain real data; they 
just store full description of image. The necessity of developing 
such a class is following: it is assumed that algorithms from 
different dynamic loading libraries pass to each other variables of 
various data types, for instance images. It is not efficient to pass 
megabytes-sized images. Some methods were developed to solve 
these problems: 
int GetInforRow() returns handle to array of eight integers – fields 
of ImageDescriptor class; 
ImageDescriptor(int inforow) constructor instantiates an object 
based on handle. 
Data type integer is supported by both C/C++ language and .Net 
framework; it can also contain a handle. So the method described 
above allows passing images between different modules.  

4. SAMPLE 

For demonstration of the approach described above a straight line 
detection algorithm was selected [4]. Block diagram is presented 
in Fig.2. 

Zero-padding

2D Hartley transform

To polar coordinates

1D Hartley transform
of lines

 
Fig.2. Straight line detection algorithm schema  

 

4.1 Main application code 
The following listing contains C# code with scripting engine 
instantiation, reading script text from file and script interpretation 
in it. 
C# 
string appPath = Application.StartupPath; 
 
m_ScriptEngine = ScriptEngine.GetInstance(new 
string[] {  
    appPath + @"\DotNetImageWrapper.dll", 
    appPath + @"\FilterPreprocessing.dll", 
    appPath + @"\Hartley.dll", 
    appPath + @"\Hartley1DWrapper.dll", 
    appPath + @"\ToPolarWrapper.dll"}); 
 
string script = ScriptEngine.ReadScriptFromFile( 
  Application.StartupPath + @"\LineDetection.js"); 
                
m_ScriptEngine.AddVariableAndInitialize( 
          "_filterInput", new Bitmap("demo.bmp")); 
 
m_ScriptEngine.Eval(script);                
m_ScriptEngine.Eval("JLastLineObject.Run();"); 



 

4.2 Interpreter 
The key role in this work has JScript.NET scripts interpreter. 
Microsoft.JScript.dll and Microsoft.Vsa.dll assemblies were used. 
Unfortunately, the standard help [10] doesn’t provide details 
about classes from Microsoft.Vsa and Microsoft.JScript 
namespaces. Because of this we had to guess all needed 
information based on class, methods and properties names. 
The interpreter is very important and difficult to implement, so it 
is worth to list the whole ScriptEngine class code. 
C# 
using System; 
using System.Reflection; 
using System.Collections; 
using System.Collections.Generic; 
using System.Windows.Forms; 
using Microsoft.JScript; 
using Microsoft.JScript.Vsa; 
using Microsoft.Vsa; 
 
public class ScriptEngine : 
System.ComponentModel.Component 
{ 
GlobalScope m_GlobalScope = null; 
 
public GlobalScope GlobalScope 
{ 
    get { return m_GlobalScope; } 
} 
 
// Constructor gets an array of assemblies names  
// to load 
public ScriptEngine(string[] assemblyReferences) 
{ 
    GlobalScope gs = 
       VsaEngine.CreateEngineAndGetGlobalScope( 
          false, assemblyReferences); 
 
    VsaEngine engine = gs.engine; 
 
    GlobalScope newGS =new GlobalScope(gs,engine); 
 
    engine.PushScriptObject(newGS); 
    m_GlobalScope = newGS; 
} 
 
// Script evaluation 
public object Eval(string scriptText) 
{ 
    // return object 
    object result = null; 
 
    try 
    { 
        result = Eval.JScriptEvaluate(scriptText,  
           m_GlobalScope.engine); 
    } 
    catch (JScriptException ex) 
    { 
        result = ex; 
        MessageBox.Show(ex.Message, string.Format( 
         "Error in script in position ({0}, {1})", 
         ex.Line.ToString(),ex.Column.ToString()), 
         MessageBoxButtons.OK, 
         MessageBoxIcon.Error); 
    } 
    catch (Exception ex) 
    { 
      MessageBox.Show(ex.Message, "Error", 
      MessageBoxButtons.OK, MessageBoxIcon.Error); 
    } 
 

    return result; 
} 
 
// Reading script from file 
public static string ReadScriptFromFile( 
   string fileName) 
{ 
    System.IO.StreamReader sr = new 
       System.IO.StreamReader(fileName); 
 
    string sScript = ""; 
    try 
    { 
        sScript = sr.ReadToEnd(); 
    } 
    catch (Exception ex) 
    { 
        //TODO 
    } 
    finally 
    { 
        sr.Close(); 
    } 
 
    return sScript; 
} 
 
// Method adds all namespaces from a given  
// assembly 
static void CollectNamespaces(Assembly assembly, 
Hashtable hTable) 
{ 
    Type[] types = assembly.GetTypes(); 
 
    if (types == null || types.Length == 0) 
        return; 
 
    foreach (Type type in types) 
    { 
        if (!type.IsSubclassOf(typeof(Object))) 
            continue; 
 
        if (type.Namespace != null) 
            hTable[type.Namespace] = type; 
    } 
} 
 
// Method adds hTable assemblies referenced by 
// a given assembly 
static void CollectReferences(Assembly assembly, 
Hashtable hTable) 
{ 
    hTable[assembly.FullName] = assembly; 
 
    AssemblyName[] aNames =  
       assembly.GetReferencedAssemblies(); 
 
    if (aNames == null || aNames.Length == 0) 
        return; 
 
    foreach (AssemblyName aName in aNames) 
    { 
        string fullName = aName.FullName; 
 
        if (hTable.ContainsKey(fullName)) 
            continue; 
 
        try 
        { 
            Assembly assemb =  
               Assembly.Load(aName); 
            hTable.Add(fullName, assemb); 
        } 
        catch { } 
    } 
} 
 



// Namespaces loading 
void Import(params string[] list) 
{ 
    foreach (string listItem in list) 
    { 
        Import.JScriptImport(listItem, 
           GlobalScope.engine); 
    } 
} 
 
// Method adds a new variable with name name 
public void AddVariable(string name) 
{ 
    m_GlobalScope.AddField(name); 
} 
 
// Assigning value to the variable name 
public object SetVariable(string name,  
                          object value) 
{ 
    return m_GlobalScope.InvokeMember(name, 
       BindingFlags.SetField, null, m_GlobalScope, 
       new object[] { value }, null, null, null); 
} 
 
// Declaring and intialization of a new variable 
public void AddVariableAndInitialize(string 
variableName, object variableValue) 
{ 
    AddVariable(variableName); 
    SetVariable(variableName, variableValue); 
} 
 
// Method gets value of variable varName 
public object GetVariable(string varName) 
{ 
    return m_GlobalScope.InvokeMember(varName,  
       BindingFlags.GetField, null, m_GlobalScope, 
       null, null, null, null); 
} 
 
// Method returns instance of ScriptEngine class 
// It gets array of paths to *.dll files 
public static ScriptEngine GetInstance( 
   string[] dlls) 
{ 
    List<Assembly> aAssemblies =  
       new List<Assembly>(); 
 
    // add to collection loaded assemblies 
    aAssemblies.AddRange( 
       AppDomain.CurrentDomain.GetAssemblies()); 
 
    foreach (string dll in dlls) 
    { 
        try 
        { 
        Assembly assembly =Assembly.LoadFrom(dll); 
 
            if (!aAssemblies.Contains(assembly)) 
                aAssemblies.Add(assembly); 
        } 
        catch { } 
    } 
 
    Hashtable tableAssemblies = new Hashtable(); 
 
    // Creating collection of needed assemblies 
    foreach (Assembly assembly in aAssemblies) 
    { 
        ScriptEngine.CollectReferences(assembly,  
           tableAssemblies);        
    } 
 
    Hashtable tableNamespaces = new Hashtable(); 
 
    // Create namespaces collection 

    foreach (DictionaryEntry entry in  
       tableAssemblies) 
    { 
        ScriptEngine.CollectNamespaces( 
          (Assembly)entry.Value, tableNamespaces); 
    } 
 
    string[] aStringDll = (string[])( 
    new ArrayList(tableAssemblies.Keys)).ToArray( 
       typeof(string)); 
 
    string[] aStringNS = (string[])( 
    new ArrayList(tableNamespaces.Keys)).ToArray( 
       typeof(string)); 
 
    ScriptEngine engine = new  
       ScriptEngine(aStringDll); 
 
    engine.Import(aStringNS); 
 
    return engine; 
} 
} 

 

4.3 Low-level modules 
How it was already mentioned above, all algorithms are 
encapsulated into .Net assemblies. The following listing contains 
code example for managed wrapper for two-dimensional Hartley 
transform: 
Managed C++ 
// include section 
#include “integral_transforms.h” 
 
using namespace System; 
using namespace System::Drawing; 
using namespace ScriptImaging; 
 
public ref class Hartley2DWrapper  
{ 
public: 
   Hartley2DWrapper(){} 
   ~Hartley2DWrapper(){} 
   !Hartley2DWrapper() {} 
 
public: 
   void DoJob(int imginfo) 
   { 
 ImageDescriptor img_id(imginfo); 
 
 size_t n[] = {img_id.Width,img_id.Height}; 
 
 float* fPtr = (float*)(img_id.DataPtr); 
 
 SwapQuadrants<2, false>(fPtr, n); 
 fht2D(fPtr, n[0], n[1]); 
 SwapQuadrants<2, false>(fPtr, n); 
   } 
}; 

This example illustrates easiness of creation managed wrapper for 
a C++ functions (SwapQuadrants and fht2D). 
 

4.4 Script 
The following listing contains script where algorithm presented in 
Fig.2 is implemented: 
JScript.NET 
public class JLineDetector 
{ 
    public function Run(): void 
    { 



        var bmpW:int = _filterInput.Width; 
        var bmpH:int = _filterInput.Height; 
         
        var maxWH:int = Math.max(bmpW, bmpH); 
        var twoPow:int = 1; 
         
        while (twoPow < maxWH)  
            twoPow *= 2; 
             
        var img1:ScriptImage =  
            new ScriptImage(twoPow, twoPow, 1, 3); 
        var img2:ScriptImage =  
            new ScriptImage(twoPow, twoPow, 1, 3); 
         
        var filter1:ZeroPadding =  
            new ZeroPadding(); 
        filter1.DoJob(_filterInput, img1.InfoRow); 
         
        var filter2:Hartley2DWrapper =  
            new Hartley2DWrapper(); 
        filter2.DoJob(img1.InfoRow); 
         
        var filter3:ToPolarWrapper =  
            new ToPolarWrapper(); 
        filter3.DoJob(img1.InfoRow, img2.InfoRow); 
         
        var filter4:Hartley1DWrapper =  
            new Hartley1DWrapper(); 
        filter4.DoJob(img2.InfoRow); 
         
        // Save images 
        img1.SaveAsBitmap(false, "out1.png"); 
        img2.SaveAsBitmap(false, "out2.png"); 
    } 
}; 
 
var JLastLineObject:JLineDetector =  
    new JLineDetector(); 

4.5 Passing images between different 
environments 
An importation image representation and transmission (between 
different programming languages) feature should be noted. An 
instance of ScriptImage type is created inside the script 
(JScript.NET), than it is passed into function from assembly as 
integer (i.e. handle). Inside the function an image descriptor is 
created on the basis of this handle. ImageDescriptor provides 
programmer with convenient access to such image data as width, 
height, data pointer etc.  

5. CONCLUSION 

A system allowing constructing complex algorithms from 
independent C++ reusable code blocks is described. Presented 
image description format brings such advantages as ability to 
access data of images created by third-party programmers and 
eliminate the need of copying big amounts of data from one 
container into another. It also allows passing images between 
different environments. Using of scripting engine and 
JScript.NET language facilitates program implementation details 
editing process  and eliminates the need to recompile any part of 
program after editing. 

6. ACKNOWLEDGEMENTS 

The research is done under financial support of RFBR, grants 06-
01-00789-a, 08-07-00362-a.  

7. REFERENCES 

[1] A. Alexandrescu. Modern C++ design. Addison-Wesley, 
2001. ISBN 0-201-70431-5 
[2] B. Stroustrup. The C++ Programming Language, Special 
Edition, Addison-Wesley, 2000. ISBN 0-201-70073-5. 
[3] A. Troelsen. C# and the .Net Platform, Springer New York 
Inc, ISBN: 9781590590553 
[4] D.B. Volegov, V.V. Gusev, D.V. Yurin. Straight Line 
Detection on Images via Hartley Transform. Fast Hough 
Transform //GraphiCon’06, Novosibirsk, Russia, June 2006 
http://www.graphicon.ru/2006/proceedings/papers/fr11_35_Voleg
ov_Gusev_Yurin.pdf. 
[5] B.S. Reddy, B.N. Chatterji, "An FFT-based technique for 
translation, rotation, and scale-invariant image registration", IEEE 
PAMI, Vol 5(8), pp. 1266-1271, August, 1996. 
[6] James Davis. Mosaics of scenes with moving objects. In 
Proc. Computer Vision and Pattern Recognition Conf., pages 354-
-360, 1998. http://citeseer.ist.psu.edu/davis98mosaics.html. 
[7] Siavash Zokai, George Wolberg. Image Registration Using 
Log-Polar Mappings for Recovery of Large-Scale Similarity and 
Projective Transformations //IEEE Transactions on Image 
Processing, Vol. 14, No. 10, October 2005. http://www-
cs.engr.ccny.cuny.edu/~wolberg/pub/tip05.pdf 
[8] B. Georgescu, P. Meer. Point Matching under Large Image 
Deformations and Illumination Changes //IEEE Transactions On 
Pattern Analysis and Machine Intelligence, June 2004, -V. 26, 
-No. 6, -P. 674-688. Code available at 
http://www.caip.rutgers.edu/riul/research/code.html  
[9] Site of company ITT Visual Information Solutions, (before 
May 15, 2006 – RSI - Research Systems, Inc.), разработчик 
пакета ENVI, http://www.ittvis.com/index.asp. 
[10] Microsoft Developer Network (MSDN) 

About the authors 

 

Andrey A. Kravtsov, a fifth year student, Moscow 
State University, Department of Computational 
Mathematics and Cybernetics. 
E-mail: andrey.a.kravtsov@gmail.com

 

Dmitry V. Yurin, PhD, is a senior scientist at 
Institute of Computing for Physics and 
Technology and at Laboratory of Mathematical 
Methods of Image Processing, Chair of 
Mathematical Physics, Faculty of Computational 
Mathematics and Cybernetics, Moscow 
Lomonosov State University. His contact email is 
yurin_d@inbox.ru

 

http://www.graphicon.ru/2006/proceedings/papers/fr11_35_Volegov_Gusev_Yurin.pdf
http://www.graphicon.ru/2006/proceedings/papers/fr11_35_Volegov_Gusev_Yurin.pdf
http://citeseer.ist.psu.edu/davis98mosaics.html
http://www-cs.engr.ccny.cuny.edu/%7Ewolberg/pub/tip05.pdf
http://www-cs.engr.ccny.cuny.edu/%7Ewolberg/pub/tip05.pdf
http://www.caip.rutgers.edu/riul/research/code.html
http://www.ittvis.com/index.asp
mailto:andrey.a.kravtsov@gmail.com
mailto:yurin_d@inbox.ru

	Abstract 
	1. INTRODUCTION 
	2. SYSTEM ARCHITECTURE 
	3. IMAGE OBJECT 
	4. SAMPLE 
	4.1 Main application code 
	4.2 Interpreter 
	4.3 Low-level modules 
	4.4 Script 
	4.5 Passing images between different environments 
	5. CONCLUSION 
	6. ACKNOWLEDGEMENTS 
	7. REFERENCES 
	About the authors 



