
Pipe Line Filtering

Dmitry V. Yurin
Moscow State University, Faculty of Computational Mathematics and Cybernetics,

Lab. of Mathematical Methods of Image Processing.
yurin_d@inbox.ru

Abstract
A unified template C++ library is proposed for image filtering by
local environment. The library provides fast and easy
implementation of wide class of image processing procedures
such as smoothing, sharpening, edge and corner detection,
differential invariants calculation, image resampling, texture
analysis etc. The resulting code is computationally effective, a
large memory saving is obtained due to image processing line by
line, no intermediate images are created. It makes easy to
combine filters and transfer output of filters to input of others.
The program code for complex filters directly reflects filtering
algorithm graph structure. It is easy to adjust the system for using
any image containers which support reading/writing operation
line by line. The system is self adjusting and has self testing and
debugging capabilities. The library proposed is especially useful
for processing of large images.
Keywords: Image processing, filtering, local environment,
programming, memory saving, edge detection, feature points,
texture descriptors, differential invariants, image resampling,
graph, DAG balancing.

1. INTRODUCTION

This paper is devoted to technical aspects of programming of
image filtering. It is supposed that the class of filters under
consideration satisfies the condition: each pixel value on output
image(s) depends on pixels on input image(s) in the same relative
coordinates and pixels in small environment of such coordinates.
The term “relative coordinates” implies ratio x/width and
y/height.

Figure 1: Harris feature detector composed of elementary filters.

A great number of frequently used procedures in image
processing satisfy this condition, including image smoothing,
sharpening, feature points and edge detection, texture analisys,
image resampling (due to the term of relative coordinates
introduced above), color spaces conversion, etc. [1].
When implementing filtering by local environment the following
issues should be taken in consideration:

 the image pixel type may be different (8-16 bit unsigned
integer, float, etc.), but it is desired to do some operations
with certain types, for example, it is desired to perform
convolutions with Gaussian and its derivatives kernels with
float point types, but range filtering with integer types;

 the image should be extended over its bounds by size of
local environment used by filter to produce output for all the
image area (otherwise during sequential filtrations the image
size will be diminished step by step); image extension is
usually implemented via the image reflection relative to it’s
bounds;

 a lot of filters are compound ones and the result of filtering
is a some combination of simple or elementary filters results,
for example, it is preferable to implement even a simple
Gaussian smoothing (due to performance reasons) as a
sequential vertical and horizontal convolution. More complex
filters such as [2] edge detection, feature points detection
(Figure 1.) and differential invariants calculations [3],
especially in scale space [4,5], have a very complex structure
composed of elementary filters.

The issues listed above result in temporary image creation for
each intermediate result – for extended size images, for
conversion pixel type, for results of elementary filters which
should be combined and filtered again. This results in allocation
of many image containers in memory or hard disk per each image
in process. It is unacceptable when the image is large (typical
image size for modern digital cameras is 30 Mb, and 0.1-10 Gb in
satellite imaging).

2. SYSTEM STRUCTURE

The base principles of the proposed system are:
 avoid creation of intermediate images;
 save memory if possible;
 program code must reflect filter structure as closely as

possible (see Figure 1.);
 easy filter design and combining;
 develop code that can be reused as frequently as possible;
 not significant program deceleration;
 auto adjusting;
 debugging features.

The system proposed is intended for realization of image
processing algorithms which can be described as graph

mailto:yurin_d@inbox.ru

),(EVG = like in (Figure 1). The vertexes or nodes

of graph are filters (rectangles or ellipses in
Figure 1), the arrows or directed edges

Vu∈ G
),(: vueEe =∈

represent images which are the result of work of filter Vu∈

(arrow tail) and are the input for filter (arrow head). The
arrows do not come from/in filter directly, but come from filter’s
output ports (Out), and come in input ports (In).

Vv∈

Each filter can contain arbitrary number of input and
output ports denoted as and respectively.

The set of all filter ports is denoted as and .
There are special types of filters – source (S) and target or
destination (T), shown as ellipses in Figure 1, these filters contain
0 input or output ports respectively. Each input port must be
connected to one and only one filter output port. Each output port
of any filter may be connected to arbitrary non zero number of
some filters input ports.

Vv∈
||. Outv ||. Inv

}.{Outv }.{Inv

2.1 System Overview
The proposed template C++ library consists of base class
FilterBase and a lot of its derivatives, class System, which
provides framework adjustment and operation, and some other
classes. Each class Filter includes as a member zero or more
classes InPort and OutPort, through which image reading and
writing are performed. Complex filtering schemes are realized by
connection of InPort to OutPort terminals of Filter classes. Such
filters can be implemented as classes derived from FilterComplex.
Each InPort object does not contain any pixel data, but only the
requirements on input data (the environment size) and a pointer to
OutPort object to which this InPort object is connected to. Class
OutPort contains class StripBuffer, where a portion of image (a
few image rows) is located. This is the only place where
intermediate images data exist. As many as required InPort
objects can be connected to the OutPort object and get access to
the same data in the StripBuffer object (see section 2.2).
Input for framework described is object(s) derived from class
FilterBase with 0 InPort and >0 OutPort members (Source filters).
Output(s) are similiar objects containing 0 OutPort and >0 InPort
member objects (Target or Destination filters).
Typical program code contains the following mandatory
fragments:
Filters creation, including source, destination elementary and/or
complex filters; generally, elementary filters are multipurpose,
their customizations are fulfilled by proper functors:

 Filter1<float> f1(..filter parameters..);
 MyFunctor fun(..functor parameters..);
 Filter2<float,MyFunctor> f2(fun);

Filters connection according to desired filtering scheme (graph),
for example, connection of filter f1 OutPort 2 to filter f3 InPort 0
looks as:

 f1.out(2).ConnectTo(&f3.in(0));

System engine creation and initialization:

 FiltersSystem sys(“test.dot");

 sys.Assign(&src,&dst);

The last step is filtering in essence:

 sys.Run();

It should be mentioned that there may be more than one source
and one target filters, for example RGB images may be realized
as 3 grayscale sources/targets or by one source (target) with 3
OutPorts (InPorts). In this case function Assign() receives
iterators to STL collections of sources and targets. Moreover,
source images can be generated line by line virtually (for
example, noise input image) and target(s) may not be an image,
for example, it may be a list of feature points detected.

2.2 InPort OutPort and StripBuffer
Each class InPort contains members: a pointer to OutPort class the
InPort class is connected to and local environment size Env
required by the filter on this input. Structure Env contains 4
integer members: l(eft), r(ight), b(efore) f(orward) – the number
of pixels from the central pixel required to calculate filter output.
Each OutPort class contains a list of pointers to InPort classes the
OutPort class is connected to and a StripBuffer class where the
results of filtering on OutPort channel are written to.
Class StripBuffer is organized as 1D array, where grayscale
image strip lines are placed line by line. To add string to buffer it
is necessary to request iterator to image line which is currently
processing (call beginUpdate() function), write data to this iterator
and than call endUpdate() function. When calling beginUpdate(),
the buffer contents are shifted by line via memmove() function to
erase data not required for further processing and to get free space
for receiving a new image line. When calling endUpdate()
function, for each pixel in this line the buffer calls post processing
functor assigned, reflects this line ends to the left by Env.l and to
the right by Env.r pixels and, if required (at first and last lines of
the whole virtual image), makes copies of some lines from buffer
to buffer to support image extension beyond the top bound (by
Env.b pixels) and beyond the bottom bound (by Env.f pixels).
After begin/end update transaction is finished, image strip in
buffer becomes accessible for reading for InPort’s connected to
OutPort, where this buffer is located. Access to image data is
performed by requesting reference to image object, which
contains pointer inside buffer and image info. Point (0,0)
corresponds to the left end of line being currently processed, the
available image portion from this line is described by Env
structure, filter can safely read pixels in requested environment
(including first and last current line pixels) they are certainly in
buffer.
It should be mentioned that after image string y is placed to
buffer, the string (y-Env.f) is ready for reading. That is each
buffer produce a delay in pipelining. Otherwise, each filter one
time should process input and output lines with the same relative
numbers in the images. In other words, the value y/height is
invariant for all the filter’s inputs and outputs at each time – by
system construction. It is always forced by system that Env.f ≥
Env.b to make all delays constant during filtering. The problems

of delay balancing are solved automatically and the algorithms
used are considered in the next section.

3. SYSTEM OPERATION

The Assign() method of the System object performs the following
to properly initialize the framework:

1) check that all the targets can be distinguished from
sources;

2) check the absence of loops in the filter graph;
3) save graph diagram (if necessary) to hard disk in DiGraph

format;
4) check that all the sources can be distinguished from

targets in back arrows direction;
5) check the absence of not connected InPorts/OutPorts;
6) propagate image size from sources through graph of

filters and accumulate requests from filters connected to
each OutPort on required environment size and meet all
the requests;

7) if there are filters with more than one InPort object in the
graph, then adjust the delays produced by buffers via
increasing some buffers to balance directed acyclic graph
(DAG) of filtering system.

The first 3 items are performed by topological sorting [6]. This
procedure is based on depth first search (DFS):

1 , ∅←G ∅←A
2 foreach Su∈
3 DFS_Visit(); u
4 Save .dot file if required

Starting sequentially from all sources, the graph is built by
recovering all graph nodes (filters) including targets. Each node
processing finishes (BLACK) in reversed topological order and
the node is inserted on the top of the nodes list of graph G. If
there are cycles in graph, DFS find back edges (Lemma 22.11)
and item 2 is performed simultaneously. The DFS_Visit algorithm
is modified (lines 2-6) to remove duplicated edges, because filter
graph can be a multigraph. One filter may produce more than one
image and transfer more than one image to another filter, that is
there are more than one edge from one node to another.

DFS_Visit(FilterBase*) u
1 //white node found, make gray uAA ∪←
2 //empty queue ∅←Q

3 foreach }.{Outuv∈

5 if //remove multiple edges Qv∉

6 vQQ ∪←

7 foreach /investigate /edge (u,v) Qv∈

8 if GvAv ∈∧∈
9 Back edge found, inform user!
10 else

11 DFS_Visit(v)

12 G.push_front(u); //finish processing u

Now all nodes of graph G are collected and initialization steps
1-3 are accomplished. To perform steps 4-5 it is sufficient to
investigate that all inputs and outputs of each filter (nodes in G)
are connected to nodes that are already in G, otherwise inform
user what filter and port is bad and refer to the saved digraph
(debugging property).

Then initialization step 6 is: in topologically sorted order (TS)
process each node of G. In this order for each node virtual images
sizes on input are known, and it is possible to calculate output
images sizes. At these points the possibility is given to the filter to
calculate and set the required environment size if it depends on
images sizes.

The last initialization step is adjusting of delays to fulfill
invariance restrictions (see the end of section 2.2). This task can
be performed by increasing delays via increasing Env.f for some
branches in filtering (pipelining) graph. For this purpose the
initial buffer assignment algorithms from [7] have been adopted.

1 foreach Vu∈ in TS order

2 if Su∈ d[u] ← 0;
3 else calcDelay(u)

4 foreach Vu∈ in TS order
5 initStripBuffers(u)

Where funcvtion calcDelay(u) is:

1 foreach }.{Inuv∈
2 w ← d[v]+u.In.Env.f/v.Out.H
3 d[u] ← max(d[u],w)

4 foreach }.{Inuv∈
5 w ← u.In.Env.f/v.Out.H
6 b[(v,u.In)] ← d[u]-d[v]-w

and function initStripBuffers(u) is

1 env ← {0,0,0,0}

2 foreach }.{. OutuInv ∈
3 en ← v.In.Env
4 f← u.Out.H*b[(u,v.In)]
5 en.f← round(en.f+f+0.5)
6 env ← max(env,en);
7 u.Out.initStripBuffer(env);

The Run() method of the System object finds out the filter that
has all input ports data ready and all output ports ready to receive
next string and executes it. By construction destination filters are
always ready to receive.

4. CONCLUSION

The library developed demonstrates high performance and very
large memory saving which allows to process huge images. The
filter developing becomes easy and fast.

5. ACKNOWLEDGEMENTS

The research is done under financial support of RFBR, grants 06-
01-00789-a, 08-07-00469-a.

6. REFERENCES

[1] Pratt, W.,K., 2001. Digital Image Processing, John Wiley &
Sons, Inc., New York, 3d edition..
[2] Canny, J., 1986. A computational approach to edge
detection. In IEEE Trans. PAMI, V. 8. P. 34—43.
[3] Schmid, C., Mohr, R., 1997. Local grayvalue invariants for
image Retrieval. In IEEE Trans. PAMI, V. 19, No. 5, P. 530—
534.
[4] Dufournaud, Y., Schmid, C., Horaud, R., 2000. Matching
images with different resolutions. In In Proc. CVPR, V. 1, P.
612—618.
[5] Mikolajczyk, K., Schmid, C., 2004. Scale & Affine Invariant
Interest Point Detectors. In International Journal of Computer
Vision. V. 60, No. 1, P. 63—86.
[6] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2002.
Introduction to Algorithms. The MIT Press. Cambridge,
Massachusetts, London, England, 2nd edition.
[7] Chatterjee M., Banerjee S., Pradhan D.,K., 2000. Buffer
Assignment Algorithms on Data Driven ASICs In IEEE Trans. on
computers. V. 49, No.1. P.16—32.

About the authors

Dmitry V. Yurin, PhD, is a senior scientist at
Institute of Computing for Physics and
Technology and at Laboratory of Mathematical
Methods of Image Processing, Chair of
Mathematical Physics, Faculty of Computational
Mathematics and Cybernetics, Moscow
Lomonosov State University. His contact email
is yurin_d@inbox.ru

mailto:yurin_d@inbox.ru

	1. INTRODUCTION
	2. SYSTEM STRUCTURE
	2.1 System Overview
	2.2 InPort OutPort and StripBuffer
	3. SYSTEM OPERATION
	4. CONCLUSION
	5. ACKNOWLEDGEMENTS
	6. REFERENCES

