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Abstract—New image processing algorithms are presented
facilitating creation of virtual models of real objects: finding
straight lines and rough image registration. Lines are found via
Fast Hough Transform using Hartley Transform. Lines and color
around them are used for rough image registration. Fuzzy logic
is used to account for color.

I. I NTRODUCTION

Automatic creation of virtual models of real objects is a
very challenging and actual problem. It is important to make
this process cheap, fast and widely available. This means that
the system should not use special equipment (laser scanners,
special light sources, sensors etc), but only widely used: digital
photo- or video- camera.

Currently the problem of creation of virtual models using
many images is studied extensively (wide-base stereo). One
of the key problems is seeking of corresponding points (point
matching). Since the base is large corresponding points may be
rather distant from each other and large size of search window
should be used. The problem may be significantly simplified
if images are registered to make corresponding points closer
to each other. Besides, the fraction of false correspondences
decreases.

The problem of rough image registration is addressed. In
three cases there exists a planar homography (2d projective
transform) which exactly maps one image to another [1]:

1) arbitrary camera position but the scene is a plane;
2) arbitrary scene but cameras have the same projection

center;
3) very distant scene: when distance from the scene to the

camera is much more then scene depth. This is often the
case in aerospace photography.

In general case there is no homography which maps one
image to another. However it is often possible to find a
homography which registers images approximately.

In case of small perspective distortions methods [2], [3], [4]
can be used. Method [2] uses properties of Fourier transform
to deal with translation, scaling and rotation. The algorithm
is able to deal with scaling coefficient up to 1.8 [2]. However
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the algorithm fails when perspective distortions are large. The
method can be successfully applied to registration of aerospace
photographs when perspective distortions are small or can be
compensated using telemetry.

Method [3] is usually used for feature tracking. However it
can be sometimes successfully applied to image registration
problem. It is able to find an affine transform and achieves
subpixel accuracy. However the algorithm works only when
difference between images is small and the value of difference
is defined by the half-width of Gaussian function used to cal-
culate derivatives. Unlike [2] the algorithm does not generate
hypotheses but instead falls to the nearest local minimum of
the functional.

Method [4] can be applied wider. In particular, difference in
scale can be up to 6 times [4]. The idea behind the method is
the following: a modification of Harris detector [5] is used to
deal with scale space [6]. The vector of differential invariants
[7], [8] is calculated for each feature. The homography is
sought via RANSAC [9]. Since RANSAC is used false cor-
respondences (outliers) may constitute significant fraction of
data. However, the results are illustrated on two images of a
mountain, taken from the same point (In this case there exists
a homography which exactly maps one image to another). It
seems that in artificial scenes the percentage of outliers may be
very large (for example, corners of windows in a multistorey
building) and the algorithm may fail. Another problem is that
RANSAC seeks a particular model (homography), however in
general case the data do not obey such a model exactly.

Thus the problem of preliminary image registration seems
to be rather actual especially if the images are taken by the
photocamera and differ significantly. Proposed method allows
to solve this problem in presence of straight lines on the scene.
Straight lines are very stable features which survive under
change of illumination conditions, camera position, projective
transforms. The algorithm finds an arbitrary homography
which approximately maps one image to another. Inherently
the algorithm generates hypotheses about possible homogra-
phies and the best one can be chosen. Color distribution of
image around lines is also taken into account.

Part II explains how straight lines on image are found. Part
III deals with registration algorithm. In Part IV results are
presented.



II. F INDING STRAIGHT LINES

Widely used method for finding parametric lines on images
is Hough Transform [10]. This transform is based on voting
and requires extensive sampling of subsets of image points
to build reliable histogram in parametric space. Due to this
fact there are many ways to approximately calculate Hough
transform, which are based on sampling not all subsets but
only some of them [11], [12], [13]. The main inconvenience
with these methods is the requirement of some heuristics to
limit subsets to sample.

In [14] is shown that Hough transform for straight lines is
equivalent to Radon transform. There are methods [15], [16]
to calculate Radon transform with complexityN logN , where
N is the number of image pixels. Techniques described in
[17] also can be used to find lines on images (however, they
require more memory than [15], [16] and apparently time).
Present works extends our previous work [16] to deal with
color around lines.

Straight line is defined by two parameters:ρ - distance
from origin to line, ρ ≥ 0, φ - angle between line normal
and abscissa axis,φ ∈ [0, 2π). Line equation in Cartesian
coordinate system is:

~xT~k − ρ = 0 (1)

~x ≡ (x, y)T (2)
~k ≡ (cosφ, sinφ)T (3)

The idea behind finding lines on image (Fig.1b) is to
integrate image along lines with variousρ, φ (Fig.1d):

R(ρ, φ) =
∫
I(~x)δ(~xT~k − ρ)d~x (4)

∞∫

−∞
δ(x)dx = 1 (5)

I(~x) - image,R(ρ, φ) - Radon transform of image (called
sinogram),δ(x) - Dirac delta-function. Maxima on sinogram
correspond to lines on image.

In [15] is shown that sinogram of image can be calculated
via Fourier transform of image. In [16] is shown that results
of [15] can be extended to Hartley transform [18]. Advantage
of Hartley transform over Fourier is that the former is real
(whereas the latter is complex), requires less memory, data are
stored more compactly and hence calculation time reduces in
3-5 times [16].

At Fig.1 example of proposed method is given. Original
color image is at Fig.1a. Edge detector [19] is applied to
Fig.1a. Result of edge detection is presented at Fig.1b. Sino-
gram of Fig.1b is at Fig.1d. Found lines are at Fig.1c. (Fig.1e
is discussed in Part II-C).

A. Hartley transform

For brevity new functioncas (x) is introduced [18]:

cas (x) ≡ cos(x) + sin(x) =
√

2 sin(x+
π

4
) (6)

Hartley transformh(~ζ) of function f(~z), ~z, ~ζ ∈ Rn:

h(~ζ) =
∫
f(~z)cas (2π~ζT~z)d~z (7)

Direct and inverse Hartley transform are identical:

f(~z) =
∫
h(~ζ)cas (2π~ζT~z)d~ζ (8)

Discrete one-dimensional Hartley transform (DHT):

hi =
L−1∑

j=0

fjcas
2πij
L

(9)

fj =
1
L

L−1∑

i=0

hicas
2πij
L

(10)

i, j = 0 . . . L− 1 (11)

There is [18] an algorithm for calculation of Hartley trans-
form with complexityL logL, like for the Fourier transform.

Two-dimensional DHT:

hi,j =
L−1∑

k,l=0

fk,lcas
2π(ik + jl)

L
(12)

Unlike Fourier transform the kernel of Hartley transform is
not separable:

cas
2π(ik + jl)

L
6= cas

2πik
L

cas
2πjl
L

Using (6):

cas (a+ b) =
1
2
(
cas acas b+ cas (−a)cas b

+cas acas (−b)− cas (−a)cas (−b)) (13)

Using (13) to calculate two-dimensional DHT one should
calculate one-dimensional DHT of rows, than columns:

h′i,j =
L−1∑

k,l=0

fk,lcas
2πik
L

cas
2πjl
L

(14)

and transform elements according to the formula:

hi,j =
1
4
(
h′i,j + h′p,j + h′i,q − h′p,q

)
(15)

p = (L− i) mod L (16)

q = (L− j) mod L (17)

a mod b means the rest of integral division ofa by b.
When applying (14), (15) straightforward low frequencies

are concentrated at the image corners. Later on zero frequency
should be moved to the center. To make this correctly one
should swap opposite quadrants of imagebefore (14) and
swap again quadrants of Hartley transformafter (15). This
is analogous to well-known procedure of calculation Centered
Discrete Fourier Transform (CDFT) but for Harltey transform.

Since implementation of Fast Hartley Transform [18] re-
quires image size to be multiple of two one should pad image
with zeroes before calculating its Hartley transform.



(a) Original image (b) Result of edge detector (c) Found straight lines

(d) Sinogram.ρ-axis is directed downwards,φ-
axis is directed to the right

(e) Sinogram after filtering (see Part II-C).

Fig. 1. Finding straight lines

B. Radon transform

A method for calculating Radon transform via Hartley
transform (analog to [15] for Fourier) is presented below.

Theorem 1 (central section):Radon transformR(ρ, φ) of
gray imageI(~x) can be calculated as follows:

R(ρ, φ) =
∫
P (r, φ)cas (2πrρ)dr (18)

P (r, φ) = H(r~k) (19)

H(~ξ) =
∫
I(~x)cas (2π~xT ~ξ)d~x (20)

~x, ~ξ ∈ R2 (21)

Thus, to calculate Radon transformR(ρ, φ) of imageI(~x)
one should:

1) Calculate two-dimensional Hartley transformH(~ξ) of
image I(~x) according to (20). ImageI(~x) is a scalar

image - result of edge detector [19] applied to original
color image. Opposite quadrants of original image must
be swaped before transform and swapped back after it.

2) ResampleH(~ξ) to polar coordinates according to (19)
(bilinear interpolation was used). Resulting image is
denotedP (r, φ)

3) Calculate one-dimensional Hartley transforms of rows
of P (r, φ) according to (18).

Proof:
Using (7), (8) one gets:

R(ρ, φ) ≡
∫
S(ρ, φ)cas (2πrρ)dr (22)

S(r, φ) ≡
∫
R(ρ, φ)cas (2πrρ)dρ (23)

Substituting (4) into (23) one gets:

S(r, φ) =
∫ ∫

I(~x)δ(~xT~k − ρ)cas (2πrρ)d~xdρ =



=
∫
I(~x)cas (2πr~xT~k)d~x = H(r~k) = P (r, φ) (24)

Substituting (24) into (22) on gets (18)

C. Finding maxima on sinogram

Finding maxima on sinogram Fig.1d is hard because of
many bright regions (not points), which do not correspond to
straight lines. Applying filter with large response to maxima
one can make maxima more contrast (Fig.1e). Filtering is done
by convolution of sinogram rows with second derivativeG2(x)
of Gauss function:

G2(x) =
d2

dx2

1√
2πσ

exp
(− x2

2σ2

)
(25)

Half-width σ is the same as used to calculate derivatives in
contour image.

There is the theorem [18] which says that Hartley transform
of convolution of two functions, one of which is either odd
or even is equal to production of their Hartley transforms
(analogous to Fourier transform). SinceG2(x) is even to filter
sinogram one should multiply rows ofP (r, φ) by Hartley
transformH2(ξ) of G2(x) (theorem 1, p. 2,3):

H2(ξ) =
∫
G2(x)cas (2πxξ)dx = ξ2 exp

(− σ2ξ2

2
)

(26)

This result is analogous to [15] but for Harltey transform.
Filtered sinogram is presented at Fig.1e. Finding maxima

after filtering is performed in two stages. At the first stage
pixels of sinogram with small intensity are zeroed. Threshold
is determined locally for small regions of sinogram. Nonzero
pixels form the set of bright clusters. At the second stage
center of mass of each cluster is calculated, point intensity
is treated as its weight. Center mass of cluster determines
parameters of line.

III. I MAGE REGISTRATION

In case the scene is planar (Fig.2) there is a planar homog-
raphy (2d projective transform)P (3×3 matrix) which exactly
maps one scene image to another:

~h2 = P~h1 (27)

~h1,~h2 - vectors of homogeneous coordinates of image points.
In case of general scene and camera position there is no

such a homography. One can find only homography which
registers images approximately. The problem is to find this
homography using parameters of found lines.

A. Homography parametrisation

Planar scene (Fig.2) is viewed by two cameras with focuses
in points F1 and F2. Normal to scene is denoted by~n
and directed from the first camera. Each camera has local
coordinate system~i1, ~j1, ~k1 and~i2, ~j2, ~k2 with origins in
focuses. Orts~i1, ~j1 and~i2, ~j2 are parallel to focal planes. Orts
~k1, ~k2 parallel to optical axes. Shift fromF1 to F2 is denoted
by ~t. Orientation of the first camera turns into orientation of
the second one byR:

R(~i1 ~j1 ~k1) = (~i2 ~j2 ~k2) (28)
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Fig. 2. Planar scene is viewed by two cameras

Distance fromF1 to scene isd1 ≥ 0. One can easily derive
the formula, which expressesP through scene geometry:

P = RT
(
I−

~t~nT

d1

)
(29)

B. Lines under homography

Under homography straight line maps to another straight
line. It is convenient to use another line parametrisation by
unit vector ~m:

~m =
w√

w2 + ρ2
(cosφ sinφ − ρ

w
)T , |~m| = 1 (30)

w is the camera angle resolution and has dimension
pixel/radian. Geometrically~m is a normal to plane passing
through camera focus and line.

If the images are related by homographyP (27) then~m1,
~m2 (parameters of corresponding lines) are related:

~m2 =
Λ~m1

|Λ~m1| (31)

Λ ≡ (P−1)T (32)

Taking into account special form (29) of matrixP one can
use Shermon-Morris formula for matrix inversion [20]:

Λ = RT
(
I +

~n~tT

d1 − (~t, ~n)

)
(33)

If only shifts are allowed which are some fractionκ of d1:

|~t| ≤ κd1 (34)

thenΛ spectrum is bounded:

1
1 + κ

≤ λ(Λ) ≤ 1
1− κ (35)

One can derive constraint (35) from (33). The constraint
is used in Part III-C. The less the module of~t the closer
eigenvalue absolute values to the unit.

C. Finding homography

The problem is to find a homography which approximately
maps set of lines on the first imageρ1,i, φ1,i to the set on the
second imageρ2,j , φ2,j . The problem is rather challenging
because of:

• Correspondences between lines are not known.



• Numbers of found lines on images are different.
• Lines found on first image can be not found on the second

one and vice versa.

1) Building the functional: Our approach is to build a
functionalF which depends on the parameters of lines and is
defined in the parametric space (element of this space defines
particular homography):

F = F (P, ρ1,i, φ1,i, ρ2,j , φ2,j)

The more lines on the first image (and the more accurate)
are mapped to lines on the second image, the less is value
of functional. Functional minimisation procedure is followed.
Each local minimum defines hypothesis about possible ho-
mography. Each homography is applied to the first image and
difference between transformed first image and second one is
calculated. The best homography is the one for which integral
over square of difference image is minimal.

The functional used:

F =
N1∑

i=1

N2∑

j=1

cijFij (36)

Fij = − exp
(− |~m2,j × Λ~m1,i|2

2σ2
f

)
(37)

The functional consists of double sum. Each summand
shows how linei on the first image is similar to the linej
on the second one. Multipliercij shows how similar are color
distributions around lines. Its choice is described in Part III-D.

Multiplier Fij shows how geometrically similar the lines
are (how accurate first line is mapped to the second one). If
line i on the first image is exactly mapped to linej on the
second one thenFij = −1.

Since there is generally no exact transform parameterσf
defines boundary on line parameters when they are treated is
equal. Due to (35) eigenvalue modules ofΛ are approximately
unit. Hence if the angle betweenΛ~m1,i and ~m2,j exceedsσf
then

|~m2,j × Λ~m1,i| À σf → |Fij | ≈ 0 (38)

2) Minimizing the functional:Functional (36) depends in
general on eight variables (29): three angles of orthogonal
matrix R, two components of unit three-dimensional vector
~n, three components of~t. This is what one expects because
homography matrix is arbitrary matrix3 × 3 defined up to
scale.

Below the algorithm for finding functional local minima is
presented:

1) A grid is defined in parametric space and functional
values are calculated at the grid nodes.

2) The nodes are sorted in ascending order and nodes with
minimal values are selected (some dozens).

3) Functional minimization follows using as starting points
selected nodes. Minimization is done by conjugate gra-
dient method [20].

4) Copies of local minima are removed since one can get
to the same minimum from different starting points.

The subtle point in the algorithm above is to select grid
step. If the step is too large there is a chance to ”slip by”
the minimum. If the step is too small one has to make many
unnecessary calculation due to large dimension of parametric
space.

Supposing that the hypersurface in parametric space around
local minimum has parabolic form, its shape (matrix of
quadratic surface) was estimated. Hence reasonable grid step
can be estimated. The formulas are too cumbersome to be
placed here.

D. Color around lines

Two lines (on different images) and area around them is
considered. The question is to say whether the lines could
be the images of the same line in space. The answer is
not a discrete value (yes/no) but a continuous one since, for
example, when the boundary of some object is viewed it can
have different background on different images and only colors
on one side will coincide. If reflectivity depends on directions
then intensities around boundaries will be different around
lines. In this work fuzzy logic is used.

Advantages of fuzzy logic over empiric functionals is
”transparency” of ideas (rules). The rules are defined and
formulas are derived from these rules using formal methods
of fuzzy logic. It is easy to change rules and formulas change
according to definitions of fuzzy logic operations.

Two color descriptors~d1, ~d2 are associated with each
line. Each color descriptor defines color distribution of image
around line to the one side of it.

In the current implementation color descriptor is the average
color around line (to the one side of line) and has three color
components:

~d = (r, g, b)T (39)

The area to average color is defined by two conditions:

• Each point of area is distant from the line not more than
3σ, whereσ is the half-width of Gauss function used to
calculate derivatives.

• When moving from line along its normalI(~x) (I(~x) -
result of edge detection) should not increase.

In this work fuzzy variable is defined to be a real number
between zero and unit. The following definitions of fuzzy
operations are used:

a AND b ≡ ab (40)

NOT a ≡ 1− a (41)

wherea, b - fuzzy logic variables. Logic addition is defined
through the well-known formula of set theory:

a OR b = NOT ((NOT a)AND(NOT b)) (42)

From (42) on gets:

a OR b = 1− (1− a)(1− b) (43)

Rules are presented below which were used to calculate how
similar are the lines (similarity measure). Input is two pairs



of color descriptors for two lines. Output is the fuzzy variable
denoting similarity measure.

1) If descriptor brightness is small and for each descriptor
in first pair there is a descriptor in the second pair with
similar brightness, then the lines are similar.

2) If for each descriptor in the first pair there is a descriptor
in the second pair with similar hue and saturation, then
the lines are similar.

3) If at least for one descriptor in the first pair there
is a descriptor in the second pair with similar hue
and saturation, then the lines are similar (account for
different background).

Fuzzy functions are defined corresponding to each state-
ments in rules (like ’intensity is small’, ’color is similar’ etc).
Than the result of each rule is calculated, their results are
joined (in terms of fuzzy logic - ’aggregation’) and similarity
of lines is calculated (’defuzzyfication’).

Coefficientcij in (36) is set to similarity between linei on
the first image and linej on the second image (0 - different,
1 - equal).

IV. RESULTS OF REGISTRATION

Results are presented at Fig.3, 4. One can see that after
registration corresponding points get more closer than on
original images. Working timetalg of algorithm (finding lines
+ registration) for Intel Pentium 800 MHz is about 10 seconds
for 1024× 1024 image and about twenty lines.

Time talg is the sum of three values:

talg = tradon + tproj + tbest (44)

where tradon = O(N logN) - time to calculate Radon
transforms of images and find lines (tradon ∼ 80%talg ). N
is the number of image pixels.tproj = O(N1N2) - time to
find hypotheses about homographies (tproj ∼ 3%talg ). N1,
N2 - numbers of lines on images.tbest = O(NhypN) - time
to select best hypothesis (tbest ∼ 10%talg). Nhyp - number of
found hypotheses (about a dozen).

V. CONCLUSION

A new algorithm for image registration is presented. The
algorithm uses information about straight lines on images and
color distributions around them. The algorithm is adequate for
complex scenes when there is no exact homography between
images but only approximate one can be found. Fast Hough
transform implemented via Hartley transform is used to find
lines on images. A functional is build and its minimization
follows to find hypotheses about possible homography.

The advantages of algorithm are the following. Firstly,
straight lines are very stable features on the images which
survive under change of illumination conditions, camera po-
sition, projective transforms. Secondly, the algorithm works
when there is a fraction of lines which are not found on
the second image. Thirdly, the algorithm generates hypotheses
about homographies and the best one can be chosen. The latter
factor significantly increases the probability to find ”the right”
transform.
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(a) First image (b) Second image (c) Transformed first image

(d) Difference of Fig.3a, 3b (e) Difference of Fig.3c, 3b

Fig. 3. Image registration (”The wharf”)

(a) First image (b) Second image (c) Transformed first image

(d) Difference of Fig.4a, 4b (e) Difference of Fig.4c, 4b

Fig. 4. Image registration (”The computer”)


