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Abstract 
In this paper we shall consider the new projection scheme of 
streaming waveform data processing for text-independent speaker 
indexing from continuous speech. It is based on an expansion into 
series of eigenfunctions of the Fourier transform. Partly this 
scheme can be also used for speech recognition. 
Keywords: Fourier transform, Hermite functions, wave 
processing, speaker recognition. 

1. INTRODUCTION  
Fourier analysis plays a very important role in wave processing 
and wave analysis. At the same time, wave parameterization to 
code wave information by some kind of mathematical formulae 
enables to perform many of wave processing procedures in a most 
effective way. The aim of the work is streaming waveform data 
(Russian speech) processing by Hermite expansion for text-
independent speaker indexing. 
The proposed method is based on the features of Hermite 
functions and quasiperiods. An expansion of signal information 
into a series of these functions enables us to perform information 
analysis of the signal and its Fourier transform at the same time, 
because the Hermite functions are the eigenfunctions of Fourier 
transform. These functions are widely used in pure mathematics, 
where the expansion into Hermite functions is also called as 
Gram-Charlier series [1], [2] and image analysis [3-6]. It is also 
necessary to underline that the joint localization of Hermite 
functions in the both frequency and temporal spaces makes using 
this functions very stable to information errors. On the other hand, 
quasiperiod is a time period of the sound corresponding to period 
of base tone for vowels or resonant consonants, so extraction of 
quasiperiods suggests separating quasiperiods in a continuous 
speech waveform. So suggested method is very stable and flexible 
to using in streaming waveform data processing. 
This work illustrates some possibilities to take full advantage of 
the use of this method. 

2. HERMITE FUNCTIONS 
The Hermite functions satisfy an important feature for wave 
processing, as they derivate a full orthonormal in 
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They also can be determined by the following recurrent formulae: 
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Moreover the Hermite functions are the eigenfunctions of the 
Fourier transform: 
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where F denotes Fourier transform operator.  
The graphs of the Hermite functions look like the following: 
 

Figure 1: Hermite functions 



3. HIERARCHY CODING IN HERMITE 
EXPANSION 
The algorithm of hierarchy coding that we used looks as follows:  
First, we approximate the whole quasiperiod with one function 
only, after that we subtract obtained result from original and 
repeat this operation with difference but using 2 functions. On 
every next step we use two times more functions than for the 
previous step (and stretch our interval of audio data to have all the 
Hermite functions used concentrated on the interval and to obtain 
the best approximation at this step). This channel separation with 
Hermite functions enables us to associate the obtained results with 
character formants.  

Figure 2: Scheme of hierarchy coding 

Figure 3: Example of quasiperiod for character "o" 

Figure 4: Hermite expansion coefficients for quasiperiod above 

4. THE ALGORITHM 
At this stage we have designed algorithm of text-independent 
speaker indexing with fixed/manual recognition threshold and the 
length of the time filter adjustment. Also vowels and resonant 
consonants indexing by this approach was designed to be used in 
speech recognition system. The default values of time filter length 
and recognition threshold used in this paper were 0.2 sec and 0.05 
correspondently. 
General scheme of the algorithm: 

Figure 5: Scheme of indexing algorithm 
At the first step we extract quasiperiods from the analyzed wave 
file and sort them by length (for improving performance).  
After elimination of noise blocks (using noise threshold) we apply 
Hermite expansion for speech blocks (quasiperiods) at the second 
stage.  



At the next step we index resonant quasiperiods using content-
independent indexing algorithm.  
Next we index resonant quasiperiods using database information 
and correct them depending on their arrangement.  
The speaker indexing is performed using resonant quasiperiods. It 
is also based on using database information. The Hermite 
coefficients retrieved from database are compared with Hermite 
coefficients calculated for the given waveform. 
Speaker indexing correction algorithms are used to treat 
incorrectly indexed speakers. First of these algorithms analyzes 
the correspondence between known resonant quasiperiods and 
indexed speakers to re-index segments with wrong detected 
speakers. Second algorithm is based on a use of time filter. 
Optimal time filter length for the dialogs used in this paper was 
found to be 0.2 sec. 
This algorithm has been implemented in “Hermite coder PWE” 
software. 
4.1 Quasiperiods extraction algorithm 
4.1.1 Basic algorithm 
Quasiperiod is a time period of the sound corresponding to period 
of base tone for vowels or resonant consonants. Extraction of 
quasiperiods suggests separating quasiperiods in a continuous 
speech waveform.  
First of all the input waveform is pre-processed to increase 
algorithm robustness: DC (direct current) offset is eliminated, and 
(if needed) waveform can be inverted to make sharpest peaks 
point upside (see fig. 6). After that we scan the waveform to find a 
block with a largest RMS value (RMS window size = 13 ms). We 
suggest this block to be corresponding to a vowel, which has 
sharp quasiperiods (because sibilants and consonants usually have 
smaller RMS). Within this block we find a maximal positive 
sample value and consider it to be a starting boundary between 
two quasiperiods. 

Figure 6: Now we have found the first boundary between 
quasiperiods. It will be a starting point. 

After that we continue finding quasiperiods’ boundaries at the 
rightmost part of the waveform. After the right part is processed, 
we reverse the left part of the waveform and find quasiperiods 
there using the same routine. The last step is to sort (simply 
rearrange) an array of quasiperiods’ boundaries.  
Now we will describe how the main routine works. During each 
step we find the next border between quasiperiods (see fig. 7).  

Figure 7: During each step we find the next border between 
quasiperiods. 

In our algorithm we find quasiperiods’ boundaries using a 
probability concept. For example if a number of previous 
quasiperiods were detected to have a base frequency around 120 
Hz (1/T, where T is average duration), then we can expect that the 
next quasiperiod has the same duration because the fundamental 
frequency of human speech is varying relatively slow. If previous 
quasiperiods were detected with a high degree of confidence (see 
below), then the mentioned probability becomes even greater.  
Given the current fundamental frequency Fcurrent we can suggest 
the most probable position for the next quasiperiod’s boundary. 
After that we construct a time-domain window, which has a shape 
of raised cosine, and apply this window to our waveform (see fig. 
8), so that the center of the window was applied to the most 
probable boundary position. 

currentFerOffsetWindowCent 1=

Figure 8: Raised cosine window increases the probability of 
preserving a frequency. 

Now we can find a maximum of the windowed waveform and 
decide it to be the next quasiperiod boundary. The current 
frequency is adjusted to match new conditions. Older 
quasiperiods also take part in the correction but now they have 
lower weights at the compound formula: 

last
currentcurrent TFF 13.07.0 ⋅+=

Here Tlast is the duration of the last detected quasiperiod. 
After each 10 quasiperiods are found, the current frequency is 
adjusted by pitch detection routine (see later): 

ectedcurrentcurrent FFF det5.05.0 +=
If pitch detection routine fails to detect the pitch of the signal at 
the given period of waveform, then the current frequency is not 
changed. 
The next step is to decide whether the last quasiperiod has been 
found with a high degree of confidence. To perform this task we 



check if there are any other maximums in the non-windowed 
(original) waveform during the last detected quasiperiod. If we 
can find a maximum that is higher than boundary values, then 
confidence degree is considered to be low, and the window 
selected for the next step will be wider than the current one. If the 
confidence degree is high (see fig. 7), we can choose a narrower 
window for the next step.  
In this way we move throughout the input waveform till the end is 
reached. 
4.1.2 Algorithm modification 
Here we modify our algorithm so that quasiperiods’ boundaries 
were corresponding not to maximums, but to zero-crossing points 
of waveform. This modification enables us to perform hierarchy 
coding of quasiperiods more effectively. We try to find a sample 
lying between two old boundaries, which is close enough to the 
center of the old quasiperiod and has a low absolute value. We 
use a V-shaped time window (see fig. 9) to increase a probability 
of snapping not only to zero, but also to the center of the old 
quasiperiod. After applying the window we search for a sample 
with absolute value, lower than a certain threshold (0.02 at our 
program). The search starts from the center of the widowed 
waveform to ensure that selected sample will lie as close as 
possible to the center.  

Figure 9: Finding a new (zero-snapped) quasiperiods’ boundary 
using a V-shaped window. Thick lines show old boundaries; thin 

line shows a new boundary. 
The center point of V-shaped window at the next old quasiperiod 
will be shifted to ensure preserving the frequency. An example of 
resulting quasiperiod boundaries by this algorithm is shown in fig. 
10. 

Figure 10: Quasiperiods detected by a modified algorithm. 
4.1.3 Pitch detection algorithm 
To decrease the error rate of quasiperiods’ separation we 
compared two algorithms for estimating the pitch of speaker. 
Being able to extract the pitch of the signal locally, we can 
dynamically correct distances between quasiperiods’ boundaries. 
Two algorithms for pitch detection were considered. The first of 
them uses a spectrum of the signal to find the fundamental. The 
second one uses a cepstrum of the signal to analyze harmonic 
structure of the signal. The second algorithm has proved a better 

stability even when the fundamental is severely masked with 
overtones (like in a phone line). So it is currently used in our 
speaker indexing software and it is described below. 
At first, the algorithm analyses the spectrum of the signal to 
decide whether the vocal or sibilant phoneme is present there. To 
decide the type of phoneme the algorithm calculates the averaged 
(per-frequency) energy at 2 frequency bands: from 200 to 2000 
Hz and from 3800 to 10000 Hz. If the first energy is at least 8 
times higher than the second one, we decide, that phoneme is 
vocal. If there is a sibilant phoneme, the fundamental cannot be 
detected. 
The algorithm employs the cepstrum of the signal to analyze the 
periodic structure of the spectrum of the harmonic signal (see fig. 
11). Periodic structure of spectrum corresponds to the 
fundamental frequency and harmonics with integer-multiple 
frequencies. When we take a Fourier transform of the logarithmic 
speech spectrum, we get a peak at the cepstrum, which 
corresponds to the fundamental frequency. 

Figure 11: Harmonic speech signal has a spectrum with a 
periodic structure. 

To achieve even better results, we use only real part of cepstrum 
(instead of a magnitude) for finding the peak, because the 
harmonic structure of spectrum corresponds to a zero-phase 
cosine harmonic. 
This algorithm has shown stable results on a various speech 
material. 

4.2 Speech/music/silence detection 
algorithm 
An algorithm was developed for detecting silent or musical blocks 
at the file being processed. The algorithm helps us to exclude 
these blocks from speaker indexing process (see fig.12). 

Figure 12: The result of speech/music/silence detection 
algorithm. Detected music is marked with the dark horizontal 

bars; detected silence is marked with light horizontal bar. 
Vertical bars correspond to detected quasiperiods. 

At the first stage the algorithm detects silent blocks at the input 
waveform. Silent blocks usually have low level of signal and 



contain only background noise. To find such blocks more 
effectively we create a separate copy of input waveform which is 
preprocessed by high-pass FIR filter with a slow roll-off of 3 dB 
per octave. The filter transforms pink background noise into white 
noise and also cuts off low-frequency rumble. Then we get a 
waveform with significantly reduced amplitude of the noise and 
increased amplitude of sibilant consonants in speech. Without 
preprocessing sibilants are often lost in a low-frequency 
background noise. 
After the filtering we apply an amplitude gate to the filtered 
waveform. The gate forces all the blocks with a volume below 
certain threshold to digital zero. The threshold is selected 
automatically. The gate features separate thresholds for opening 
and closing, and soft attacks and releases with look-ahead (attack) 
time of 125 ms and release time of 170 ms. 
After the gating, the blocks with digital zeroes at the processed 
waveform are considered as silent blocks at the original 
waveform. 
At the second stage the algorithm detects music at the input signal 
to exclude it from speaker indexing. The rest part of waveform is 
divided into 1-second intervals and fed to the algorithm of 
speech/music detection. 
The decision is generated at each block separately. The final 
decision is a compound of 2 factors. The first factor is an 
amplitude dynamics of the block. The second factor is the 
distribution of fundamental in time at the block. 
To calculate the first factor we obtain the amplitude envelope of 
the given block by calculating RMS with a moving 20 ms 
window. The standard deviations of RMS values over the entire 
block and over 3 sub-blocks (of 0.3 seconds) are measured. Their 
weighted sum is considered to be the first factor. Hereby we 
assume that speech usually has a wider dynamics than music has, 
because in speech we continuously observe fast changes of vowel 
phonemes with large amplitudes and short pauses between 
different phonemes or between words (see fig. 13). Music, in 
contrary, usually has low dynamics (esp. heavily compressed 
music on TV or radio). 

Figure 13: Amplitude envelope of speech (upper) and music 
(lower).    The dynamics of speech is significantly higher. 

To calculate the second factor for the given block we obtain the 
distribution of fundamental frequency in time. Here we use a 
slightly modified version of our pitch detection algorithm, 
featuring very high frequency accuracy. We obtain high degree of 
frequency accuracy by analyzing the harmonic structure of the 
signal. After we get the rough estimate of fundamental frequency 
from cepstrum, we analyze the spectrum of the signal to find 
higher harmonics. Because of the linear frequency grid, we get 
higher frequency resolution when analyzing higher harmonics. To 

find spectral peaks, corresponding to harmonics, even more 
precisely we use spline interpolation of spectrum values between 
FFT frequency bins. The final fundamental frequency is 
calculated as following: 

3
32 321
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fffF ++=

Here f1, f2 and f3 are frequencies of 3 first harmonics (including 
the fundamental f1) found at the interpolated spectrum. 
After we calculate the fundamental frequency over the block with 
a step of 20 ms, we smooth the obtained array with a median filter 
(kernel size = 3) to eliminate dropped-off samples. 
The next step is to decide, whether the obtained curve 
corresponds to speech or to music. To analyze the curve we 
introduce the dF0 value, which is the first derivative of F0 over 

time (actually we should write dt
dF0 ). We calculate dF0 value at 

each point of F0 array and count the number of points, where the 
absolute value of dF0 is between 30 and 500 Hz/second. Then at 
all such points we check the sign of dF0 and exclude every point 
dF0(n), where 

))1(())(( 00 −≠ ndFsignndFsign  
or 

))2(())(( 00 −≠ ndFsignndFsign  
Then we calculate the percent of selected points and this percent 
is considered to be the second factor. Higher percent means that 
there's high probability that the given block corresponds to 
speech. 
Here we assume that speech has a definite fundamental frequency, 
which is always varying in time with a speed from 30 to 500 
Hz/second. The music, in contrary, usually has no definite 
fundamental frequency, so our routine for pitch detection either 
returns nothing, or resulting fundamental curve is not smooth (like 
for speech) and consists of random samples. 
The final decision for each block is based on these 2 criterions (it 
is a weighted sum of them). The algorithm has shown good results 
on various sound samples. Still there are opportunities to improve 
its performance by carefully optimizing weights of different 
factors at the compound formula and performing more thorough 
spectrum analysis. 

4.3 Vowels detection algorithm 
A fast algorithm for detection of quasiperiods, which correspond 
to vowels in speech, has been developed. The algorithm works 
after the input waveform has been already separated into 
quasiperiods. 
The final decision on each quasiperiod is based on 2 criterions: 
waveform shape similarity within 2 adjacent quasiperiods and a 
number of zero crossings at the given quasiperiod. 
The first criterion estimates the shape similarity by finding the 
norm of the difference between waveforms of 2 adjacent 
quasiperiods. 



∑
∑∑

=

==

−

⋅
= n

i
ii

n

i
i

n

i
i

yx

yx
Similarity

1

2
1

2

1

2

)(

Here we assume that the shape of waveform corresponding to 
vowel is changing slowly (see fig. 10). 
The second criterion calculates the number of zero-crossing points 
at the waveform of a given quasiperiod. If this number is between 
2 and 15, then the probability of a vowel quasiperiod is high. Here 
we assume that sibilants and noise have a much larger number of 
zero-crossing points (because of significant HF component). 
The final decision is calculated as a weighted sum of probabilities 
from these 2 criterions. 
This algorithm has been integrated into our BSS program as a new 
criterion for speaker separation, and into our Hermite Coder 
program to exclude non-vocal quasiperiods from indexing and to 
increase its speed.  
4.4 Approximated waves 
At this stage, at first, we should select the number of the Hermite 
functions used for speaker indexing. The optimal number for this 
task using hierarchy coding is 63 functions (32 functions for the 
last layer). Further we stretch our approximation’s quasiperiod [-
A0, A0] to the segment [-A1, A1] for every layer, defined from the 
next criterion: 
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where n is the number of the Hermite functions per this layer for 
the approximation. 
Then we decompose wave function f(x) into Fourier series by 
Hermite functions: 
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where fk(x) = fk-1(x) – valuek-1(x), f0(x) = f(x), 
nk is a number of functions for the current layer, 
l is the current layer. 
Since the Hermite functions are the eigenfunctions of Fourier 
transform, we have also found Fourier transform of the 
approximation for every quasiperiod of the original wave. 
We used pre-sorting of the quasiperiods by length and odd/even 
property of Hermite functions to accelerate this algorithm. 

4.5 Indexing results for three speakers 
conversation  

1 2 3 1 3 2
Figure 15: Original dialog (15sec, 3 speakers, 5 changes) 

The shown waveform represents a conversation (in Russian) of 3 
speakers on a news program on NTV Russian television. For 
every speaker we have trained a database on his independent 
monolog (length = 8 seconds). Each training took about 14 
seconds (on PIII-750). Indexing took about 21 seconds. (It is 
necessary to notice, that even longer dialogues are calculated in 
real-time on PIII-850). Frequently we can reduce indexing errors 
by using manual threshold, but sometimes best threshold 
coincides with the default one. The example of reducing errors by 
using manual threshold you can see below (fig. 16, fig. 17). 
 

1 2 1 2 3 1 3 21    3          2 
Figure 16: Indexed dialog based on Hermite expansion 

(time filter is off, fixed recognition threshold = 0.05) 

1 2 3 1 3 2
Figure 17: Indexed dialog based on Hermite expansion 

(time filter is off, manual (best) recognition threshold = 0.0474) 
Let's compare results obtained by Hermite transform and results 
obtained by Fourier series (fig. 18, fig. 19). 

13        1       2    1      3       2            3          1  3  21 3    1       2 
Figure 18: Indexed dialog based on Fourier expansion 

(time filter is off, fixed recognition threshold = 0.05) 



1 2 1 3 2 3 1 3 2
Figure 19: Indexed dialog based on Fourier expansion 

(time filter is off, manual (best) recognition threshold = 0.042) 
As we see, in this case application of Hermite transform is more 
justified, than application of Fourier series. As we will see further, 
statistics confirms this statement. 
But this algorithm at this stage does not determine precisely 
indexing borders. It is due to processing only resonant consonants 
and vowels. Their distribution you can see on a figure 20. 

Figure 20: Indexed resonant quasiperiods 
At figure 20 colored vertical bars correspond to sections of 
waveform consisting of resonant quasiperiods. The change of 
color indicates the change of a speaker or the change of phoneme. 
At figures 15-19 colored vertical bars correspond to sections of 
waveform consisting of different speakers. The change of color 
indicates the change of a speaker. The numbers below figures 
show detected speakers. 
As we saw before, thresholds are necessary to eliminate incorrect 
recognition of the periods lying between different phonemes. 
Minimal threshold is zero (all quasiperiods will be missed). 
Maximal threshold is one (every quasiperiod will be recognized). 
Optimal threshold found for the tested data is 0.05, but sometimes 
it must be corrected for better recognition.  
Another way to eliminate incorrectly indexed speakers is to use 
time filter. Minimal time filter length is zero (time filter is off). 
Optimal found time filter length is 0.2 sec, but sometimes it must 
be corrected for better recognition. The example of reducing 
errors by using time filter for waveforms from figures 16 and 18 
you can see on fig. 19 and fig. 20 correspondently. 

1 2 3 1 3 2
Figure 19: Indexed dialog based on Hermite expansion 

(time filter length fixed to 0.2, fixed recognition threshold = 0.05) 

1 3 2 3 1 3 2 3 1 2
Figure 20: Indexed dialog based on Fourier expansion 

(time filter length fixed to 0.2, fixed recognition threshold = 0.05) 
As we see, in the case with time filter the application of Hermite 
transform is more justified too (compared to Fourier series). As 
we will see further, statistics confirms this statement too. 

4.6 Statistics of indexing results 
When acquiring statistics, the dialogues of two types were used: 
with two speakers and with three speakers. For each dialogue we 
also had a set of solo monologues of each of the speakers. The 
training monologues of two types were used: short monologues 
(7-15 seconds each), and long monologues (20-45 seconds each). 
All database trainings on these monologues were performed 
automatically. All dialogues were tested both using Hermite 
transform based indexing, and using Fourier series based 
indexing. In most cases it was necessary to correct the recognition 
threshold manually. In less often cases it was necessary to correct 
the length of a time filter manually. 
We have calculated the error rate using the following formula: 

χ
ξχ −=er , where 

er is the error rate, 
χ is the number of all inclusions of different speakers, 
ξ is the number of correctly indexed inclusions of different 
speakers. 
The obtained results are shown in the following tables: 
Short training monologues (7-15 seconds each) without time 
filter: 

Error rate Fixed parameters Manual parameters 
Hermite transform 46,3% 32,8% 

Fourier series 71,4% 52,3% 
Short training monologues (7-15 seconds each) with time filter: 

Error rate Fixed parameters Manual parameters 
Hermite transform 43,2% 7,6% 

Fourier series 61% 16,6% 
Long training monologues (20-45 seconds each) without time 
filter: 

Error rate Fixed parameters Manual parameters 
Hermite transform 48,9% 6,2% 

Fourier series 62,3% 8% 
Long training monologues (20-45 seconds each) with time filter: 

Error rate Fixed parameters Manual parameters 



Hermite transform 10,5% 4,4% 
Fourier series 31,5% 6,2% 

Best achieved error rate without time filter is 6,2% (Hermite 
transform with long training monologues). 
Best achieved error rate with time filter is 4,4% (Hermite 
transform with long training monologues). 
It can be seen that the best error rate corresponds to Hermite 
transform with manual parameters adjustment. It is necessary to 
emphasize that quite good results are achieved at the default 
parameters on long trainings when time filter is turned on. Shown 
results confirm that when dynamically changing time windows are 
involved, the application of Hermite transform for speaker 
indexing is more justified. 

5. CONCLUSION 
In this paper we considered the new projection scheme of 
streaming waveform data processing for text-independent speaker 
indexing from continuous speech, which is based on the features 
of Hermite functions and quasiperiods.  We have used an 
expansion into series of eigenfunctions of the Fourier transform, 
which has enabled us using advantages of a time-frequency 
analysis. 
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