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Abstract

Numerical projection method of the Fourier transform inversion from data

given on a finite interval is proposed. It is based on an expansion of the solution

into a series of eigenfunctions of the Fourier transform. The number of terms

of the expansion depends on the length of the data interval. Convergence of

the solution of the method is proved. The projection method for the case of

the sine Fourier transform and the set of the odd Hermite functions being its

eigenfunctions are examined and applied to numerical Fourier filtering.
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1 Introduction

The Hermite functions as the eigenfunctions of the Fourier transform [1, 2, 3]

are widely used in the Fourier analysis. Expansions into series of the Hermite

functions in Fourier analysis applications can be found in image coding and

analysis [4, 5], statistics [6], electrophysiology [7], Monte-Carlo computations [8],

diffraction structure investigations [9, 10] and other areas of sciences.

The Hermite functions have also attracted considerable interest in applica-

tions as real functions minimizing the Gabor uncertainty [11, 12] for the Fourier

transform. The Gabor principle by analogy with the Heisenberg uncertainty

principle is that the product of localization of a function in real (time) and re-

ciprocal (frequency) spaces has a lower bound and the Gabor functions [13] are

complex functions realizing this bound.

In many cases we know that the data to be processed by the Fourier trans-

form are not compact supported. Nevertheless, they are given on a finite interval

only. The principal problem in this situation is to find a criterion to estimate

the number of terms to be used for the expansion of the data into a series of

the Hermite functions. The idea to relate the number of terms with the length

of the experimental interval and thus to take into consideration the additional

physical information on the data was first introduced in [14]. The aim of our

paper is to justify this approach and to show some application of the method

to the problem of the Fourier filtering.

The outline of the paper is the following. We consider in §2 a projection

method of solution of an inverse problem for linear operator equations including

as a special case the problem of the Fourier transform inversion with the data

given on a finite interval. A theorem of convergence of the solution for the

method is proved. The properties of the Hermite functions are investigated in

§3. The feasibility of the proposed method for inversion of the sine Fourier

transform using approximation of solution by a series of the Hermite functions

is shown. The application of the method of Fourier transform inversion in the

Fourier filtering is illustrated in §4. The practical advantages of the proposed
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projection method are discussed in §5.

2 Preliminaries

We consider the problem of finding of a function z from known u

Az = u, A : L2[ 0,∞) → L2[ 0,∞), (1)

where A is a linear continuous operator and the operator A has a complete

orthonormal in L2[ 0,∞) system of eigenfunctions {ϕi}, i=1, 2, . . . such that

the absolute values of the eigenvalues {λi}, are bounded and are bounded away

from zero:

∞ > Λ > |λi| > λ > 0. (2)

The inverse problem (1) is well-posed [15] and has an unique solution z for

the known u. If instead of the exact right side u(x) of the equation (1) we have

a function uδ(x) and an error δ

‖uδ − u‖L2[0,∞) ≤ δ, (3)

then ‖zδ − z‖L2[0,∞)−→
δ→0

0. Here zδ is the solution of the equation Azδ = uδ.

In many cases the information on u(x) can be obtained on a finite interval

[0, xmax] only and the problem can be posed as

Azxmax = uxmax , A : L2[ 0,∞) → L2[ 0, xmax]. (4)

In general, we have not the uniqueness of the solution zxmax for this problem

and thus the problem is ill-posed.

Consider now the case when instead of uxmax(x) we have uδ(x) on the interval

[0, xmax]. In this situation it is reasonable to find an approximation of the unique

solution of the well-posed problem (1) instead of finding of an approximation of

one of the solutions of the problem (4). The lack of the information for x > xmax

can be considered as an “error” in the right side of the equation (1). So, it is

necessary to find an approximate solution zδ
xmax

that ‖zδ
xmax

− z‖ −→
xmax→∞

δ→0

0,

where z is the solution of (1).
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Definition. Set of functions {ψi} is called norm-ordered with index k if

‖ψi‖L2[ x,∞) < ‖ψi+j‖L2[ x,∞), i = 1, 2, . . . , j = k, k + 1, . . . , (5)

for all x, where x > x1 ≥ 0 and k ≥ 1 is a constant.

If for some k > 0, ∞ > x1 ≥ 0 we can reindex set of the eigenfunctions of

our operator A so that the set ϕi becomes norm-ordered with index k, then the

algorithm of solution of our problem can be based on the following theorem.

Theorem 1. Let

zδ
xmax

(y) =
nm∑

i=1

dδ,i
xmax

ϕi(y),

where

dδ,i
xmax

=
cδ,i
xmax

λi
, cδ,i

xmax
=

xmax∫

0

uδ
xmax

(x)ϕi(x) dx, i = 1, 2, . . . , nm,

and nm is the maximum n, satisfying the condition

‖ϕi‖L2[ xmax,∞) ≤
ε

n1/2+σ
, i = 1, 2, . . . , n, (6)

ε > 0, σ > 0 – constants. Then

‖zδ
xmax

− z‖L2[ 0,∞) −→
xmax→∞

δ→0

0.

Proof.

The second term in the right side of the inequality

‖zδ
xmax

− z‖L2[ 0,∞) ≤ ‖zδ
xmax

− zδ‖L2[ 0,∞) + ‖zδ − z‖L2[ 0,∞)

tends to zero for δ → 0. For the first term the following estimate has place

‖zδ
xmax

− zδ‖L2[ 0,∞) =




∞∫

0

(zδ
xmax

(y)− zδ(y))2 dy




1/2

≤

≤


∞∫

0

(
nm∑

i=1

(cδ,i
xmax

− cδ
i )

1
λi

ϕi(y)

)2

dy




1/2

+



∞∫

0

( ∞∑

i=nm+1

c δ
i

1
λi

ϕi(y)

)2

dy




1/2

.
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According to (5),(6), nm → ∞ when xmax → ∞. Therefore the second term

tends to zero when xmax →∞.

At the same time,



∞∫

0

(
nm∑

i=1

(cδ,i
xmax

− cδ
i )

1
λi

ϕi(y)

)2

dy




1/2

=

=




∞∫

0




nm∑

i=1




xmax∫

0

uδ(ξ)ϕi(ξ) dξ −
∞∫

0

uδ(ξ)ϕi(ξ) dξ


 1

λi
ϕi(y)




2

dy




1/2

=

=




∞∫

0




nm∑

i=1

∞∫

xmax

uδ(ξ)ϕi(ξ) dξ
1
λi

ϕi(y)




2

dy




1/2

≤

≤ 1
λ




∞∫

0




nm∑

i=1




∞∫

xmax

uδ2
(ξ) dξ




1/2 


∞∫

xmax

ϕ2
i (ξ) dξ




1/2

ϕi(y)




2

dy




1/2

≤

≤ 1
λ
‖uδ‖ ε

n
1/2+σ
m




∞∫

0

(
nm∑

i=1

ϕi(y)

)2

dy




1/2

≤ ‖uδ‖ε
λnσ

m

−→
nm→∞

0,

Q.E.D.

Theorem 2. For the coefficients dδ,i
xmax

, i = 1, 2, . . . , nm, the following

estimate has place

|dδ,i
xmax

− di| ≤ δ + ‖u‖L2[xmax,∞)
ε

n
1/2+σ
m

,

where

di =
1
λi

∞∫

0

u(x)ϕi(x) dx.

Proof.

|dδ,i
xmax

− di| =
∣∣∣∣∣∣

xmax∫

0

(u(x)− uδ(x))ϕi(x) dx +

∞∫

xmax

u(x)ϕi(x) dx

∣∣∣∣∣∣
≤

≤ ‖u(x)−uδ(x)‖L2[0,xmax]‖ϕi(x)‖L2[ 0,xmax]+‖u(x)‖L2[xmax,∞)‖ϕi(x)‖L2[xmax,∞) ≤

≤ δ + ‖u(x)‖L2[xmax,∞)
ε

n
1/2+σ
m

,

Q.E.D.
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3 Hermite functions

The Hermite functions are the eigenfunction of the Fourier transform [2]. The

properties of this set of functions enables us to construct an algorithm of inver-

sion of the Fourier transform described above in the general case.

The Hermite polynomials are defined as [16, 17]

Hn(x) = (−1)nex2 dne−x2

dxn
, (7)

and satisfy the following relations

H ′
n(x) = 2nHn−1(x), (8)

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (9)

The Hermite functions are defined as follows

Φn(x) = e−
x2
2 Hn(x). (10)

They satisfy the recursion relation

Φn+1(x) = 2xΦn(x)− 2nΦn−1(x). (11)

The same definitions and relations for the orthonormal in L2[0,∞) Hermite

polynomials and functions are

Ĥn(x) =
(−1)n

√
2n−1n!

√
π

ex2 dne−x2

dxn
, (12)

Ĥn+1(x) = x

√
2

n + 1
Ĥn(x)−

√
n

n + 1
Ĥn−1(x), (13)

Φ̂n(x) = e−
x2
2 Ĥn(x) =

1√
2n−1n!

√
π

e−
x2
2 Hn(x), ‖Φ̂n‖L2[ 0,∞) = 1, (14)

Φ̂n+1(x) = x

√
2

n + 1
Φ̂n(x)−

√
n

n + 1
Φ̂n−1(x). (15)
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Lemma 1. The norms of the Hermite functions Φn satisfy the recursion

relation

‖Φn‖2L2[0,R] = 2n ‖Φn−1‖2L2[0,R] − Φn(R) Φn−1(R). (16)

Proof.

Applying (8) and integrating by parts we obtain

‖Φn‖2L2[0,R] =

R∫

0

e−x2
Hn(x)Hn(x)dx =

1
2(n + 1)

R∫

0

e−x2
Hn(x)dHn+1(x) =

=
1

2(n + 1)


e−x2

Hn(x)Hn+1(x)
∣∣∣
R

0
−

R∫

0

Hn+1(x) d
(
e−x2

Hn(x)
)

 =

=
1

2(n + 1)
e−R2

Hn(r)Hn+1(R)−

− 1
2(n + 1)

R∫

0

Hn+1(x)
(
−2xe−x2

Hn(x)dx + e−x2
dHn(x)

)
.

According to (9) we have

R∫

0

2xHn(x)Hn+1(x)e−x2
dx =

R∫

0

H2
n+1(x)e−x2

dx+

R∫

0

2nHn−1(x)Hn+1(x)e−x2
dx =

=

R∫

0

H2
n+1(x)e−x2

dx +

R∫

0

Hn+1(x)e−x2
dHn(x).

Therefore

‖Φn‖2L2[0,R] =
1

2(n + 1)
e−R2

Hn(R)Hn+1(R) +
1

2(n + 1)

R∫

0

H2
n+1(x)e−x2

dx.

Thus, for the Hermite functions we have

‖Φn‖2L2[0,R] =
1

2(n + 1)

(
Φn(r)Φn+1(R) + ‖Φn+1‖2L2[0,R]

)
,

and the required result follows.
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For the orthonormal Hermite functions Φ̂n the recursion relation may be

written as follows

∥∥∥Φ̂n

∥∥∥
2

L2[0,R]
=

∥∥∥Φ̂n−1

∥∥∥
2

L2[0,R]
− 1√

2n
Φ̂n(R)Φ̂n−1(R). (17)

We will show the idea of the method of the Fourier transform inversion with

the case of the sine Fourier transform on a half-line.

The odd Hermite functions (see Fig. 1)

Ψn(x) = Φ̂2n+1(x) (18)

are the eigenfunctions of the sine Fourier transform

∞∫

0

Ψn(x) sin xy dx = (−1)n

√
π

2
Ψn(y). (19)

They satisfy the following recursion relation

Ψn+1(x) =
2x2 − 4n− 3√
(2n + 2)(2n + 3)

Ψn(x)−
√

2n(2n + 1)
(2n + 2)(2n + 3)

Ψn−1(x). (20)

Lemma 1a. The norms of the orthonormal Hermite functions Ψn satisfy

the recursion relation

‖Ψn‖2L2[0,R] = ‖Ψn−1‖2L2[0,R]−

− 1
2R

(
Ψ2

n(R) +
4n + 1√

2n(2n + 1)
Ψn(R)Ψn−1(R) + Ψ2

n−1(R)

)
. (21)

The general behavior of the norms ‖Ψn‖2L2[0,x] as functions of x is shown

in Fig. 2. According to (21) there are intersections between ‖Ψn‖2L2[0,x] and

‖Ψn+1‖2L2[0,x]. Nevertheless, the following theorem has place [18].

Theorem 3. The set of functions {Ψn} is norm-ordered with index 2 for

x1 = 1, that is

‖Ψn+i‖2L2[x,∞) > ‖Ψn−1‖2L2[x,∞) , ∀i, n ≥ 1, ∀x ≥ 1. (22)
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4 Projection scheme of Fourier filtering

The general scheme of the Fourier filtering for function smoothing looks as

follows

f(x) F−→ f̂(k) −→ f̆(k) = f̂(k) ·G(k) F−1

−→ f̃(x), (23)

where F is the Fourier transform and G(k) is a “window” function. We will

consider the case of the sine Fourier filtering

F (f(x)) = Fs(f(x)) =

√
2
π

∞∫

0

f(x) sin xk dx.

An example of a window function is the “natural” window: G0(k) = 1 for

0 < k ≤ kmax, and G0(k) = 0 for k > kmax. Its use blur the initial function

f(x), x ≥ 0 and add false oscillations to the result. These disadvatages are

typical for all window functions used in practice [19].

The projection method enables us to construct an effective algorithm of the

Fourier filtering to avoid these problems and to store the filtered function in a

compact form.

Instead of the scheme (23) the filtering is performed by approximating of f̂(k)

with a finite series of the odd Hermite functions Ψn concentrated on [0, kmax]

f̃(x) =
nm∑

i=0

ciΨi(x), ci = (−1)i

kmax∫

0

f̂0(k)Ψi(k) dk, (24)

nm = max
{

n | ‖Ψi‖2L2[0,kmax] ≥ 1− ε
}

, (25)

where 1 > ε > 0 is a constant.

By this method the multiplication of f̂(k) by a window function G(k) in the

scheme (23) is replaced by expanding of f̂(k) into the finite series of nm odd

Hermite functions concentrated on the selected interval. The nm value can be

numerically found using Lemma 1a.

Figs. 3-5 show an example of use of the projection method in the Fourier

filtering. We added uniformly distributed error to the initial function f(x). The

resulting function fδ(x) was treated by the Fourier filtering with the natural
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window and with the projection method for kmax = 8. Thus, the sine Fourier

transform f̂(k) of fδ(x) was cut at k = 8 (see Fig. 4) and was continued by 0

for k > kmax. Then the inverse sine Fourier transform was calculated by the

projection method (the obtained approximation f̂p(k) with ε = 0.1, nm = 17

is plotted with dotted line in Fig. 4) and by the explicit formula of the sine

Fourier transform inversion. The results by the projection method f̃p(x) and

by the natural window application f̃s(x) are shown in Fig. 3 along with initial

functions f(x) and fδ(x). Figs. 5a, 5b show more detailed parts of Fig. 3.

5 Conclusion

The methods usually used for numerical sine Fourier transform inversion from

data given on a finite interval are based either on the explicit formula for the

inverse Fourier transform or on the solution of an integral equation of the first

kind with a fixed upper limit of integration.

The standard method based on the use of the explicit formula of the sine

Fourier transform is equivalent to the expansion of the data into an infinite

series of the odd Hermite functions with the assumption that the data is zero

outside the experimental interval. In this case the use of the Hermite functions

which are not concentrated on the experimental interval in practice adds noise

to the result, because the coefficients of the expansion for these functions depend

critically on the unavailable data outside our interval.

The inverse problem for the integral equation of the first kind being an ill-

posed problem is solved, for example, in [20], using the regularizing method of

Tikhonov [15]. The idea to replace the initial problem which has a continuos

dependence of the result on the initial data, to an unstable problem and to

suppress then this unstability by a regularizing method does not look natural.

It is preferable to use methods, which take into account the properties of the

sine Fourier transform while no important information about the initial problem

is rejected.

The projection method was illustrated for the case of the sine Fourier trans-

10



form inversion. This method can be also used for the complex Fourier transform

[21]. The projection method in the case of the Hankel transform [22] is based

on the system of Laguerre functions.

Use of Gauss-Hermite quadrature to find the coefficients of the expansion [3]

allows us to construct fast algorithms for the proposed method.

Finally, some of the features of the projection method can be mentioned: (i)

Additional physical information is used to find the solution (length of the data

interval), (ii) Smoothing of the result is performed without loss of the physical

information, (iii) It is possible to test if the data quality is sufficient for the

given length of the data interval, basing on the quality of the fitting of the

data obtained, (iv) The approximation of the data and its Fourier transform

are stored in a compact form.

The authors are grateful to Professor A.M. Denisov for many valuable dis-

cussions and helpful suggestions.
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Figure 1: Odd Hermite functions

Figure 2: Norms of the first 20 odd Hermite functions in consequent order (from

the left to the right)
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Figure 3: Sine Fourier filtering results

Figure 4: Sine Fourier filtering results
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Figure 5: Details of Fig. 3
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