Segmentation using Level Set Methods Region Based Active Contours

Dmitry Sorokin

Laboratory of Mathematical Methods of Image Processing Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

Spring semester 2020

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Active Contours (Snakes)

Active contour model (snakes) can be written as:

$$E_{AC}(\mathcal{C}) = \int_0^1 lpha |\mathcal{C}'(q)|^2 + eta |\mathcal{C}''(q)|^2 dq + \int_0^1 P(\mathcal{C}(q)) dq,$$

where *P* is the potential field.

The deformable contour (snake) is a mapping:

$$\mathcal{C}(q): [0,1] \to \mathbb{R}^2, \quad q \mapsto \mathcal{C}(q) = (x(q), y(q))^T.$$

Potential P can be:

• Edges:
$$P_{edge}(\mathcal{C}(q)) = -|\nabla(G_{\sigma} * f(\mathcal{C}(q)))|^2$$

- Lines (high intensity): $P_{line}(\mathcal{C}(q)) = -G_{\sigma} * f(\mathcal{C}(q))$
- Combination: $P(C(q)) = -w_{line}P_{line} w_{edge}P_{edge}$
- Often P(C(q)) = g(|∇G_σ * I(C(q))|) where g : [0,∞) → ℝ⁺ is a strictly decreasing function: g(r) → 0 as r → ∞.

Active Contours: Evolution equation

The snake evolution equation:

$$\frac{\partial \mathcal{C}}{\partial t} = \alpha \mathcal{C}''(s) - \beta \mathcal{C}''''(s) - k_1 \mathbf{n}(s) - k_2 \frac{\nabla \mathcal{P}(\mathcal{C}(s))}{|\nabla \mathcal{P}(\mathcal{C}(s))|}$$

where

$$P(\mathcal{C}(s)) = -w_{\textit{line}}(G_{\sigma} * f(\mathcal{C}(s))) + w_{\textit{edge}} |\nabla(G_{\sigma} * f(\mathcal{C}(s)))|^2$$

In matrix form:

$$(I + \tau A)X^{t+1} = X^t + \tau F(X^t)$$

Parameter choice (better but not obligatory):

- α controls elasticity
- \triangleright β controls stiffness

k₁ sign controls inflate or deflate

 \blacktriangleright τ controls the snake speed

Problems with Parametric Curves

Reparametrization needed (hard with surfaces in 3D)

Cannot handle topological changes

Hard to extend to 3D

$$\begin{split} &\gamma \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial}{\partial s} \left(w_{10} \frac{\partial \mathbf{v}}{\partial s} \right) - \frac{\partial}{\partial r} \left(w_{01} \frac{\partial \mathbf{v}}{\partial r} \right) + 2 \frac{\partial^2}{\partial s \partial r} \left(w_{11} \frac{\partial^2 \mathbf{v}}{\partial s \partial r} \right) \\ &+ \frac{\partial^2}{\partial s^2} \left(w_{20} \frac{\partial^2 \mathbf{v}}{\partial s^2} \right) + \frac{\partial^2}{\partial r^2} \left(w_{02} \frac{\partial^2 \mathbf{v}}{\partial r^2} \right) + \nabla P(\mathbf{v}(s, r)) = 0, \end{split}$$

Geodesic Active Contours

- Caselles et.al. 1995, Kichenassamy et al. 1995
- Curve with minimal geodesic length is searched.

$$egin{aligned} E_{GAC}(\mathcal{C}) &= \int_{0}^{L(\mathcal{C})} g(|
abla G_{\sigma} st I(\mathcal{C}(s))|) ds = \ &= \int_{0}^{1} g(|
abla G_{\sigma} st I(\mathcal{C}(q))|) |\mathcal{C}'(q)| dq \end{aligned}$$

where $g : [0, \infty) \to \mathbb{R}^+$ is a strictly decreasing function such that $g(r) \to 0$ as $r \to \infty$, e.g.,

$$g(|\nabla G_{\sigma} * I(x,y)|) = \frac{1}{1 + |\nabla G_{\sigma} * I(x,y)|}$$

- The curve is attracted by image edges, where the weight g(|∇G_σ ∗ I(C(q))|) is small.
- Energy functional is not convex and therefore there are several local minima.

Geodesic Active Contours: Evolution Equation

Evolution equation (i.e. Euler-Lagrange equation with <u>∂C</u> <u>∂t</u> on the left side) for geodesic active contours is

$$rac{\partial \mathcal{C}}{\partial t} = (g\kappa - (
abla g \cdot \mathbf{n}))\,\mathbf{n}$$

where **n** is curve normal (vector) and κ is curvature (scalar)

- > This equation can be rewritten in level-set framework.
- The curve is embedded in SDF *u* (with evolution speed ν = gκ − ∇g ⋅ n). The evolution equation becomes

$$\frac{\partial u}{\partial t} = g\kappa |\nabla u| - \nabla g \cdot \nabla u$$

Level Sets Idea

Curve C is represented implicitly as a zero level set of a higher-dimensional function u : ℝ² → ℝ.

$$\mathcal{C} = \{(x, y) : u(x, y) = 0\}$$

In level set formulation, the curve evolution according to

$$\frac{\partial \mathcal{C}}{\partial t} = \beta \mathbf{n}$$

leads to the evolution of embedding function u according to

$$\frac{\partial u}{\partial t} + \beta |\nabla u| = 0$$

where *n* is curve normal and β is the evolution speed (scalar).

Level Sets Idea

Curve

b Different embedding functions u(x, y)

Signed Distance Function (SDF): Example

For
$$C = \partial \Omega$$
, SDF *d* defined by:

$$d(\mathbf{x}) = \begin{cases} -\min_{\mathbf{y} \in C} |\mathbf{x} - \mathbf{y}| & \text{if } \mathbf{x} \in \Omega^- \\ +\min_{\mathbf{y} \in C} |\mathbf{x} - \mathbf{y}| & \text{if } \mathbf{x} \in \Omega^+ \cup C \end{cases}$$

• Normal
$$n =
abla d$$
 , $|
abla d| = 1$

• Curvature
$$\kappa = \nabla \cdot \nabla d = \nabla^2 d = \Delta d$$

Geodesic Active Contours: Evolution Equation

The evolution equation

$$\frac{\partial u}{\partial t} = g\kappa |\nabla u| - \nabla g \cdot \nabla u$$

contains curvature motion and velocity field motion.

- It is solved using level set methods
- We can add normal direction motion (baloon force)

$$\frac{\partial u}{\partial t} = (\mathbf{c} + \kappa) \mathbf{g} |\nabla u| - \nabla \mathbf{g} \cdot \nabla u$$

Geodesic Active Contours: Iterative Scheme

The equation

$$u_t = (\mathbf{c} + \epsilon \kappa) \mathbf{g} |\nabla \mathbf{u}| + \beta \nabla \mathbf{g} \cdot \nabla \mathbf{u}$$

consists of three types of motion we have discussed before:

- normal direction motion with speed $cg(|\nabla G_{\sigma} * I(x, y)|)$
- curvature motion multiplied by a factor $\epsilon g(|\nabla G_{\sigma} * I(x, y)|)$
- external velocity field motion given by $\beta \nabla g$.
- Therefore, we have

$$u_{ij}^{k+1} = u_{ij}^k + \tau \cdot [\text{Normal}(cg) + \text{Curvature}(\epsilon g) - \text{Velocity}(\beta
abla g)].$$

Three types of motion

All Types of Motion Together

The general equation

$$u_t = \mathbf{a}|\nabla u| - \epsilon \kappa |\nabla u| + \beta \mathbf{V} \cdot \nabla u$$

is discretized with the numerical scheme

$$u_{ij}^{n+1} = u_{ij}^{n} + \tau \begin{bmatrix} [\max(cg_{ij}, 0)\nabla^{+} + \min(cg_{ij}, 0)\nabla^{-}] + \\ +[\epsilon g_{ij}K_{ij}^{n}\sqrt{(D_{ij}^{0x})^{2} + (D_{ij}^{0y})^{2}}] + \\ \\ \begin{bmatrix} \max(w_{ij}^{n}, 0)D_{ij}^{-x} + \min(w_{ij}^{n}, 0)D_{ij}^{+x} \\ + \max(v_{ij}^{n}, 0)D_{ij}^{-y} + \min(v_{ij}^{n}, 0)D_{ij}^{+y} \end{bmatrix} \end{bmatrix},$$

Note: $w_{ij} = g'_x(ih, jh)$ and $v_{ij} = g'_y(ih, jh)$

Stability condition: The most restrictive (curvature) term forces $\tau = O(h^2)$

Level Set Methods: Narrow Band

We can compute the evolution in a narrow band around the zero level set only!

Active Contours: Example

Source: [Kass et. al. 1987]

Geodesic Active Contours: Example

Initial contour

Result $\tau = 0.25, c = 1, \epsilon = 0.5,$ $\beta = 0.5, p = 2, \sigma = 2.0$

Geodesic Active Contours: Example

What if no / weak / noisy edges?

- Region interior was not considered in previously discussed active contours!
- No region homogeneity was required (image structures under the curve are important for solution only).

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Contents

Active contours recap

Active Contours Without Edges Mumford-Shah Functional

Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Mumford-Shah Functional

- Functional formulation of segmentation.
- Segmentation (u, C) of an image f : Ω → ℝ is defined as the minimizer of

$$\mathsf{E}_{\mathsf{MS}}(u,\mathcal{C}) = \lambda \int_{\Omega} (u-f)^2 dx + \beta \int_{\Omega \setminus \mathcal{C}} |\nabla u|^2 dx + \mu |\mathcal{C}|$$

where u(x) is smoothed version of f(x), and C is an edge set curve where u is allowed to be discontinuous

- First term penalises deviations from original image *f*
- Second term penalises variations within each segment
- ► Third term penalises the edge length |C|
- Mathematically very difficult:
 - We are looking for edges C and image u
 - Non-convex
 - Complicated and computationally expensive
- No unique solution in general.
- Several simplifications of functional E_{MS} were proposed

Mumford-Shah Functional: Example

From [P. Getreuer, Chan-Vese Segmentation, IPOL Journal, 2012]

Mumford-Shah Functional

Piecewise constant formulation

Segmentation (u, C) of an image f : Ω → ℝ is defined as the minimiser of

$$E_{MS1}(u, \mathcal{C}) = \int_{\Omega} (u-f)^2 dx + \mu |\mathcal{C}|$$

where u(x) u is required to be constant on each connected component of $\Omega \setminus C$

 Existence of a solution proved by [Mumford and Shah, 1989] and [Morel and Solimini, 1994]

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional

Active-Contours Without Edges: Chan-Vese Functional

Active-Contours Without Edges: Solution

Summary

References

Active-Contours Without Edges

- Chan and Vese 1998
- **Given**: Image $f : \Omega \to \mathbb{R}$
- Goal: Segmentation of Ω into two regions (possibly disconnected)
- Curve evolution is based on region information (but not on edges)
- Can be extended to segment color and textured images.

Active Contours Without Edges: Example 1

Source: Chan, Vese, Active Contours Without Edges, 2001

Active Contours Without Edges: Example 2

Source: Chan, Vese, Active Contours Without Edges, 2001

Active-Contours Without Edges: Idea

- Regions are separated by a curve C.
- In each region, a constant grey-value is supposed to approximate the image.
- Data term penalises the deviation from the piecewise constant approximation of the input image
- Regularity term impose regularity constraints for the curve (requires curve of minimal length).

Active-Contours Without Edges: Functional

- Let $f(x) : \Omega \to \mathbb{R}$ is the input image.
- Let C be the boundary between two regions Ω_1 and Ω_2 . $\Omega = \Omega_1 \cup \Omega_2 \cup C$
- Chan-Vese functional is defined

$$\begin{aligned} \mathcal{E}_{CV}(\mathcal{C}, \mathbf{c}_1, \mathbf{c}_2) &= \mu \mathcal{L}(\mathcal{C}) + \nu \mathcal{A}(\Omega_1) + \\ &+ \lambda_1 \int_{\Omega_1} |f(\mathbf{x}) - \mathbf{c}_1|^2 d\mathbf{x} + \lambda_2 \int_{\Omega_2} |f(\mathbf{x}) - \mathbf{c}_2|^2 d\mathbf{x} \end{aligned}$$

where $\mu \ge 0, \nu \ge 0, \lambda_1, \lambda_2 \ge 0$ are given fixed parameters (weights), L(C) denotes the length of C, $A(\Omega_1)$ denotes the area inside C, and c_1 and c_2 are mean intensity values of two distinct regions

• We minimize the functional with respect to c_1, c_2 , and C.

Equivalence with Mumford-Shah Functional

Chan-Vese functional:

$$\begin{aligned} E_{CV}(\mathcal{C}, \mathbf{c}_1, \mathbf{c}_2) &= \mu L(\mathcal{C}) + \nu A(\Omega_1) + \\ &+ \lambda_1 \int_{\Omega_1} |f(\mathbf{x}) - \mathbf{c}_1|^2 d\mathbf{x} + \lambda_2 \int_{\Omega_2} |f(\mathbf{x}) - \mathbf{c}_2|^2 d\mathbf{x} \end{aligned}$$

Mumford-Shah functional:

$$E_{MS}(u, \mathcal{C}) := \lambda \int_{\Omega} (u - f)^2 dx + \beta \int_{\Omega \setminus K} |\nabla u|^2 dx + \mu |\mathcal{C}|$$

Key difference:

- Only two regions (in MS $\lambda = \lambda_1 = \lambda_2$)
- Area term

Piecewise constant approximation u with 2 values

Chan-Vese Functional: Theory

- For given C, the optimal values c₁ and c₂ are uniquely determined as the average gray values of f within their respective regions.
- ► There exist a curve C of finite length that minimises $E_{CV}(C) = E_{CV}(C, c_1(C), c_2(C))$ (existence of solution).
- Energy is non-convex, therefore there can exist more then one local minimum.

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Active-Contours Without Edges: Implementation

Level set formulation: The curve C is represented as a zero level set of a continuous function u : Ω → ℝ. We get

$$\begin{split} E_{CV}(\mathcal{C}, c_1, c_2) &= E_{CV}(u, c_1, c_2) = \\ &= \mu \int_{\Omega} |\nabla H(u(x))| dx + \nu \int_{\Omega} H(u(x)) dx + \\ &+ \lambda_1 \int_{\Omega} (f(x) - c_1)^2 H(u(x)) dx + \\ &+ \lambda_2 \int_{\Omega} (f(x) - c_2)^2 (1 - H(u(x))) dx \end{split}$$

where H(u) is Heaviside function:

$$H(u) = \begin{cases} 1 & \text{for } u \ge 0\\ 0 & \text{for } u < 0 \end{cases}$$

Active-Contours Without Edges: Implementation

• H(u) is Heaviside function:

$$H(t) = \left\{egin{array}{cc} 1 & ext{ for } t \geq 0 \ 0 & ext{ for } t < 0 \end{array}
ight.$$

• $\delta(t) = \frac{d}{dt}H(t)$ is Dirac delta function:

$$\int_{-\infty}^{+\infty} \delta(x) f(x) dx = f(0), \quad \int_{-\infty}^{+\infty} \delta(x) dx = 1$$

Curve length:

$$L(\mathcal{C}) = \int_{\Omega} |\nabla H(u(x))| dx = \int_{\Omega} \delta(u(x)) |\nabla u(x)| dx$$

Constants are average gray values of regions:

$$c_1 = \frac{\int_{\Omega} f(x)H(u(x))dx}{\int_{\Omega} H(u(x))dx}, \quad c_2 = \frac{\int_{\Omega} f(x)(1-H(u(x)))dx}{\int_{\Omega} (1-H(u(x)))dx}$$

Active-Contours Without Edges: Implementation

Regularized version of H is used:

$$H_{\epsilon}(u) = \frac{1}{2}(1 + \frac{2}{\pi}tan^{-1}\left(\frac{u}{\epsilon}\right)).$$

• The corresponding δ_{ϵ} :

Evolution Equation

Minimization of CV functional leads to the following evolution equation:

$$\frac{\partial u}{\partial t} = \delta_{\epsilon}(u) \left[\mu \nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right) - \nu - \lambda_1 (f - c_1)^2 + \lambda_2 (f - c_2)^2 \right]$$

where

$$c_1 = \frac{\int_{\Omega} f(x) H(u(x)) dx}{\int_{\Omega} H(u(x)) dx}, \quad c_2 = \frac{\int_{\Omega} f(x) (1 - H(u(x))) dx}{\int_{\Omega} (1 - H(u(x))) dx}$$

and δ_ϵ is regularized Dirac function. It is a derivative of

$$H_{\epsilon}(u) = \frac{1}{2}(1 + \frac{2}{\pi}tan^{-1}\left(\frac{u}{\epsilon}\right)).$$

- Notice, the first term is the curvature κ
- *u* is changed only within narrow band where $\delta_{\epsilon} \neq 0$.

The discrete evolution equation is:

$$u_{ij}^{k+1} = u_{ij}^{k} + \tau \delta_{\epsilon} (u_{ij}^{k}) \cdot \left[\text{Curvature}(\mu) - \lambda_1 (f_{ij} - c_1)^2 + \lambda_2 (f_{ij} - c_2)^2 \right]$$

where c_1 and c_2 are average intensities of foreground and background at time $k\tau$ and Curvature(μ) is the curvature term applied at u_{ij} (see previous Lecture).

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Example: Comparison to GAC

Initial contour

Result Chan-Vese $\tau = 0.5, \lambda_1 = \lambda_2 = 0.05,$ $\epsilon = 10, \mu = 10, \nu = 0$

Example: Comparison to GAC

Initial contour

 $\begin{array}{l} \text{Result GAC} \\ \tau = 0.25, \textit{c} = 1, \epsilon = 0.5, \\ \beta = 0.5, \textit{p} = 2, \sigma = 2.0 \end{array}$

Example: Comparison to Mumford-Shah

Chan-Vese functional:

$$\begin{aligned} E_{CV}(\mathcal{C}, \mathbf{c}_1, \mathbf{c}_2) &= \mu L(\mathcal{C}) + \nu A(\Omega_1) + \\ &+ \lambda_1 \int_{\Omega_1} |f(\mathbf{x}) - \mathbf{c}_1|^2 d\mathbf{x} + \lambda_2 \int_{\Omega_2} |f(\mathbf{x}) - \mathbf{c}_2|^2 d\mathbf{x} \end{aligned}$$

Mumford-Shah functional:

$$E_{MS}(u, \mathcal{C}) := \lambda \int_{\Omega} (u - f)^2 dx + \beta \int_{\Omega \setminus K} |\nabla u|^2 dx + \mu |\mathcal{C}|$$

From [P. Getreuer, Chan-Vese Segmentation, IPOL Journal, 2012]

Example

 $\begin{aligned} & \text{Result} \\ \tau = 0.5, \lambda_1 = 1, \, \lambda_2 = 0.02, \\ \epsilon = 10, \mu = 10, \nu = 0 \end{aligned}$

Example: Initial *u*₀

•
$$u_0$$
 does not have to be SDF
• $u_0(x, y) = \sin(\frac{\pi}{5}x)\sin(\frac{\pi}{5}y)$

$$au = 0.5, \lambda_1 = 1, \lambda_2 = 1,$$

 $\mu = 0.2, \nu = 0, \epsilon = 1$
From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]

Example: Initial u₀

u₀ is circle SDF

 $\mu=\text{0.3, }\nu=\text{0, }\epsilon=\text{1}$ From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]

Example: Dependence on μ

Chan–Vese results with different values of μ .

 $\tau = 0.5, \lambda_1 = 1, \lambda_2 = 1,$ $\nu=\mathbf{0},\,\epsilon=\mathbf{1}$ From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]

Example: Dependence on ν

Example: Reinitialization

Reinitialization is required to avoid separated objects

$$\tau = 0.5, \lambda_1 = 1, \lambda_2 = 1, \mu = 0.15, \nu = 0, \epsilon = 1$$

49/54

3D Example

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

Summary

- Mumford-Shah functional is a general variational formulation of segmentation
 - It is mathematically very difficult (search for function u and contours C)
 - Non-convex
 - Computationally expensive
- Chan-Vese active contours without edges is a region based segmentation approach
 - Segmentation into 2 components
 - Considers homegenity of regions not only contours
 - It is a special case of Mumfird-Shah functional
 - Fast computation based on level sets

Contents

Active contours recap

Active Contours Without Edges

Mumford-Shah Functional Active-Contours Without Edges: Chan-Vese Functional Active-Contours Without Edges: Solution Examples

Summary

References

References

- Getreuer, Pascal. "Chan-vese segmentation."Image Processing On Line 2 (2012): 214-224.
- Chan, Tony F., and Luminita A. Vese. "Active contours without edges."IEEE Transactions on image processing 10.2 (2001): 266-277.