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Active Contours (Snakes)
I Active contour model (snakes) can be written as:

EAC(C) =

∫ 1

0
α|C′(q)|2 + β|C′′(q)|2dq +

∫ 1

0
P(C(q))dq,

where P is the potential field.
I The deformable contour (snake) is a mapping:

C(q) : [0,1]→ R2, q 7→ C(q) = (x(q), y(q))T .

I Potential P can be:
I Edges: Pedge(C(q)) = −|∇(Gσ ∗ f (C(q)))|2

I Lines (high intensity): Pline(C(q)) = −Gσ ∗ f (C(q))

I Combination: P(C(q)) = −wlinePline − wedgePedge

I Often P(C(q)) = g(|∇Gσ ∗ I(C(q))|) where g : [0,∞)→ R+

is a strictly decreasing function: g(r)→ 0 as r →∞.
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Active Contours: Evolution equation
I The snake evolution equation:

∂C
∂t

= αC′′(s)− βC′′′′(s)− k1n(s)− k2
∇P(C(s))

|∇P(C(s))|

where

P(C(s)) = −wline(Gσ ∗ f (C(s))) + wedge|∇(Gσ ∗ f (C(s)))|2

I In matrix form:

(I + τA)X t+1 = X t + τF (X t )

I Parameter choice (better but not obligatory):
I α controls elasticity
I β controls stiffness
I k1 sign controls inflate or deflate
I |τk1| < |τk2| < 1
I τ controls the snake speed
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Problems with Parametric Curves
I Reparametrization needed (hard with surfaces in 3D)

I Cannot handle topological changes

I Hard to extend to 3D
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Geodesic Active Contours
I Caselles et.al. 1995, Kichenassamy et al. 1995
I Curve with minimal geodesic length is searched.

EGAC(C) =

∫ L(C)

0
g(|∇Gσ ∗ I(C(s))|)ds =

=

∫ 1

0
g(|∇Gσ ∗ I(C(q))|)|C′(q)|dq

where g : [0,∞)→ R+ is a strictly decreasing function
such that g(r)→ 0 as r →∞, e.g.,

g(|∇Gσ ∗ I(x , y)|) =
1

1 + |∇Gσ ∗ I(x , y)|

I The curve is attracted by image edges, where the weight
g(|∇Gσ ∗ I(C(q))|) is small.

I Energy functional is not convex and therefore there are
several local minima.
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Geodesic Active Contours: Evolution Equation

I Evolution equation (i.e. Euler-Lagrange equation with ∂C
∂t

on the left side) for geodesic active contours is

∂C
∂t

= (gκ− (∇g · n)) n

where n is curve normal (vector) and κ is curvature (scalar)
I This equation can be rewritten in level-set framework.
I The curve is embeded in SDF u (with evolution speed
ν = gκ−∇g · n).
The evolution equation becomes

∂u
∂t

= gκ|∇u| − ∇g · ∇u

8/54



Level Sets Idea

I Curve C is represented implicitly as a zero level set of a
higher-dimensional function u : R2 → R.

C = {(x , y) : u(x , y) = 0}

In level set formulation, the curve evolution according to

∂C
∂t

= βn

leads to the evolution of embedding function u according to

∂u
∂t

+ β|∇u| = 0

where n is curve normal and β is the evolution speed
(scalar).
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Level Sets Idea

I Curve

I Different embedding functions u(x , y)
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Signed Distance Function (SDF): Example
I For C = ∂Ω, SDF d defined by:

d(x) =

{
−miny∈C |x− y| if x ∈ Ω−

+ miny∈C |x− y| if x ∈ Ω+ ∪ C
I Normal n = ∇d , |∇d | = 1
I Curvature κ = ∇ · ∇d = ∇2d = ∆d

digital shape SDF d(x)
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Geodesic Active Contours: Evolution Equation

I The evolution equation

∂u
∂t

= gκ|∇u| − ∇g · ∇u

contains curvature motion and velocity field motion.
I It is solved using level set methods
I We can add normal direction motion (baloon force)

∂u
∂t

= (c + κ)g|∇u| − ∇g · ∇u
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Geodesic Active Contours: Iterative Scheme

I The equation

ut = (c + εκ)g|∇u|+ β∇g · ∇u

consists of three types of motion we have discussed
before:
I normal direction motion with speed cg(|∇Gσ ∗ I(x , y)|)
I curvature motion multiplied by a factor εg(|∇Gσ ∗ I(x , y)|)
I external velocity field motion given by β∇g.

I Therefore, we have

uk+1
ij = uk

ij +τ ·[Normal(cg)+Curvature(εg)−Velocity(β∇g)].
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Three types of motion

external velocity normal motion curvature motion

14/54



All Types of Motion Together
The general equation

ut = a|∇u| − εκ|∇u|+ βV · ∇u

is discretized with the numerical scheme

un+1
ij = un

ij + τ



[max(cgij ,0)∇+ + min(cgij ,0)∇−]+

+[εgijK n
ij

√
(D0x

ij )2 + (D0y
ij )2]+

[
max(wn

ij ,0)D−x
ij + min(wn

ij ,0)D+x
ij

+ max(vn
ij ,0)D−y

ij + min(vn
ij ,0)D+y

ij

]


,

Note: wij = g′x (ih, jh) and vij = g′y (ih, jh)

Stability condition: The most restrictive (curvature) term forces
τ = O(h2)
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Level Set Methods: Narrow Band

Whole domain

Narrow band

I We can compute the evolution in a narrow band around the
zero level set only!

16/54



Active Contours: Example

Source: [Kass et. al. 1987]
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Geodesic Active Contours: Example

Initial contour Result
τ = 0.25, c = 1, ε = 0.5,
β = 0.5,p = 2, σ = 2.0
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Geodesic Active Contours: Example
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What if no / weak / noisy edges?

I Region interior was not considered in previously discussed
active contours!

I No region homogeneity was required (image structures
under the curve are important for solution only).
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Mumford-Shah Functional
I Functional formulation of segmentation.
I Segmentation (u, C) of an image f : Ω→ R is defined as

the minimizer of

EMS(u, C) = λ

∫
Ω

(u − f )2dx + β

∫
Ω\C
|∇u|2dx + µ|C|

where u(x) is smoothed version of f (x), and C is an edge
set curve where u is allowed to be discontinuous

I First term penalises deviations from original image f
I Second term penalises variations within each segment
I Third term penalises the edge length |C|
I Mathematically very difficult:

I We are looking for edges C and image u
I Non-convex
I Complicated and computationally expensive

I No unique solution in general.
I Several simplifications of functional EMS were proposed
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Mumford-Shah Functional: Example

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Mumford-Shah Functional

I Piecewise constant formulation
I Segmentation (u, C) of an image f : Ω→ R is defined as

the minimiser of

EMS1(u, C) =

∫
Ω

(u − f )2dx + µ|C|

where u(x) u is required to be constant on each connected
component of Ω \ C

I Existence of a solution proved by [Mumford and Shah,
1989] and [Morel and Solimini, 1994]
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Active-Contours Without Edges

I Chan and Vese 1998
I Given: Image f : Ω→ R
I Goal: Segmentation of Ω into two regions (possibly

disconnected)
I Curve evolution is based on region information (but not on

edges)
I Can be extended to segment color and textured images.
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Active Contours Without Edges: Example 1

Source: Chan, Vese, Active Contours Without Edges, 2001

28/54



Active Contours Without Edges: Example 2

Source: Chan, Vese, Active Contours Without Edges, 2001
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Active-Contours Without Edges: Idea

I Regions are separated by a curve C.
I In each region, a constant grey-value is supposed to

approximate the image.
I Data term penalises the deviation from the piecewise

constant approximation of the input image
I Regularity term impose regularity constraints for the

curve (requires curve of minimal length).
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Active-Contours Without Edges: Functional

I Let f (x) : Ω→ R is the input image.
I Let C be the boundary between two regions Ω1 and Ω2.

Ω = Ω1 ∪ Ω2 ∪ C
I Chan-Vese functional is defined

ECV (C, c1, c2) = µL(C) + νA(Ω1)+

+ λ1

∫
Ω1

|f (x)− c1|2dx + λ2

∫
Ω2

|f (x)− c2|2dx

where µ ≥ 0, ν ≥ 0, λ1, λ2 ≥ 0 are given fixed parameters
(weights), L(C) denotes the length of C, A(Ω1) denotes the
area inside C, and c1 and c2 are mean intensity values of
two distinct regions

I We minimize the functional with respect to c1,c2, and C.

31/54



Equivalence with Mumford-Shah Functional

I Chan-Vese functional:

ECV (C, c1, c2) = µL(C) + νA(Ω1)+

+ λ1

∫
Ω1

|f (x)− c1|2dx + λ2

∫
Ω2

|f (x)− c2|2dx

I Mumford-Shah functional:

EMS(u, C) := λ

∫
Ω

(u − f )2dx + β

∫
Ω\K
|∇u|2dx + µ|C|

I Key difference:
I Only two regions (in MS λ = λ1 = λ2)
I Area term
I Piecewise constant approximation u with 2 values
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Chan-Vese Functional: Theory

I For given C, the optimal values c1 and c2 are uniquely
determined as the average gray values of f within their
respective regions.

I There exist a curve C of finite length that minimises
ECV (C) = ECV (C, c1(C), c2(C)) (existence of solution).

I Energy is non-convex, therefore there can exist more then
one local minimum.
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Active-Contours Without Edges: Implementation

I Level set formulation: The curve C is represented as a zero
level set of a continuous function u : Ω→ R. We get

ECV (C, c1, c2) = ECV (u, c1, c2) =

= µ

∫
Ω
|∇H(u(x))|dx + ν

∫
Ω

H(u(x))dx+

+ λ1

∫
Ω

(f (x)− c1)2H(u(x))dx+

+ λ2

∫
Ω

(f (x)− c2)2(1− H(u(x)))dx

where H(u) is Heaviside function:

H(u) =

{
1 for u ≥ 0
0 for u < 0
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Active-Contours Without Edges: Implementation
I H(u) is Heaviside function:

H(t) =

{
1 for t ≥ 0
0 for t < 0

I δ(t) = d
dt H(t) is Dirac delta function:∫ +∞

−∞
δ(x)f (x)dx = f (0),

∫ +∞

−∞
δ(x)dx = 1

I Curve length:

L(C) =

∫
Ω
|∇H(u(x))|dx =

∫
Ω
δ(u(x))|∇u(x)|dx

I Constants are average gray values of regions:

c1 =

∫
Ω f (x)H(u(x))dx∫

Ω H(u(x))dx
, c2 =

∫
Ω f (x)(1− H(u(x)))dx∫

Ω(1− H(u(x)))dx
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Active-Contours Without Edges: Implementation

I Regularized version of H is used:

Hε(u) =
1
2

(1 +
2
π

tan−1
(u
ε

)
).

I The corresponding δε:
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Evolution Equation
I Minimization of CV functional leads to the following

evolution equation:

∂u
∂t

= δε(u)

[
µ∇ ·

(
∇u
|∇u|

)
− ν − λ1(f − c1)2 + λ2(f − c2)2

]
where

c1 =

∫
Ω f (x)H(u(x))dx∫

Ω H(u(x))dx
, c2 =

∫
Ω f (x)(1− H(u(x)))dx∫

Ω(1− H(u(x)))dx

and δε is regularized Dirac function. It is a derivative of

Hε(u) =
1
2

(1 +
2
π

tan−1
(u
ε

)
).

I Notice, the first term is the curvature κ
I u is changed only within narrow band where δε 6= 0.
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Discrete Evolution Equation

The discrete evolution equation is:

uk+1
ij = uk

ij +τδε(uk
ij )·
[
Curvature(µ)− λ1(fij − c1)2 + λ2(fij − c2)2

]
where c1 and c2 are average intensities of foreground and
background at time kτ and Curvature(µ) is the curvature term
applied at uij (see previous Lecture).
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Example: Comparison to GAC

Initial contour Result Chan-Vese
τ = 0.5, λ1 = λ2 = 0.05,
ε = 10, µ = 10, ν = 0
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Example: Comparison to GAC

Initial contour Result GAC
τ = 0.25, c = 1, ε = 0.5,
β = 0.5,p = 2, σ = 2.0
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Example: Comparison to Mumford-Shah
I Chan-Vese functional:

ECV (C, c1, c2) = µL(C) + νA(Ω1)+

+ λ1

∫
Ω1

|f (x)− c1|2dx + λ2

∫
Ω2

|f (x)− c2|2dx

I Mumford-Shah functional:

EMS(u, C) := λ

∫
Ω

(u − f )2dx + β

∫
Ω\K
|∇u|2dx + µ|C|

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Example

Initial contour Result
τ = 0.5, λ1 = 1, λ2 = 0.02,
ε = 10, µ = 10, ν = 0
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Example: Initial u0

I u0 does not have to be SDF
I u0(x , y) = sin(π5 x) sin(π5 y)

τ = 0.5, λ1 = 1, λ2 = 1,
µ = 0.2, ν = 0, ε = 1

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Example: Initial u0

I u0 is circle SDF

τ = 0.5, λ1 = 1, λ2 = 1,
µ = 0.3, ν = 0, ε = 1

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Example: Dependence on µ

τ = 0.5, λ1 = 1, λ2 = 1,
ν = 0, ε = 1

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Example: Dependence on ν

τ = 0.5, λ1 = 1, λ2 = 1,
µ = 0.2, ε = 1

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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Example: Reinitialization
I Reinitialization is required to avoid separated objects

τ = 0.5, λ1 = 1, λ2 = 1,
µ = 0.15, ν = 0, ε = 1

From [P. Getreuer, Chan–Vese Segmentation, IPOL Journal, 2012]
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3D Example

Input Result
Size: 160 × 150 × 60

50/54



Contents

Active contours recap

Active Contours Without Edges
Mumford-Shah Functional
Active-Contours Without Edges: Chan-Vese Functional
Active-Contours Without Edges: Solution
Examples

Summary

References

51/54



Summary

I Mumford-Shah functional is a general variational
formulation of segmentation
I It is mathematically very difficult (search for function u and

contours C)
I Non-convex
I Computationally expensive

I Chan-Vese active contours without edges is a region
based segmentation approach
I Segmentation into 2 components
I Considers homegenity of regions not only contours
I It is a special case of Mumfird-Shah functional
I Fast computation based on level sets
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