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Active Contour Model
I The deformable contour (snake) is a mapping:

C(s) : [0,1]→ R2, s 7→ C(s) = (x(s), y(s))T .

I We define energy functional of the contour as

Esnake(C) =

∫ 1

0
Eint (C(s)) + Eext (C(s))ds,

where Eint (C(s)) is internal energy defined as

Eint (C(s)) = α(s)|C′(s)|2 + β(s)|C′′(s)|2

and Eext (C(s)) is external energy defined as

Eext (C(s)) = P(C(s)),

where P is the potential associated to the image.
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Problems with Parametric Curves
I Reparametrization needed (hard with surfaces in 3D)

I Cannot handle topological changes

I Hard to extend to 3D
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Level Sets Idea

I Curve C is represented implicitly as a zero level set of a
higher-dimensional function u : R2 → R.

C = {(x , y) : u(x , y) = 0}

In level set formulation, the curve evolution according to

∂C
∂t

= βn

leads to the evolution of embedding function u according to

∂u
∂t

+ β|∇u| = 0

where n is curve normal and β is the evolution speed
(scalar).
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Level Sets Idea

I Curve

I Different embedding functions u(x , y)
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Signed Distance Function (SDF): Example
I For C = ∂Ω, SDF d defined by:

d(x) =

{
−miny∈C |x− y| if x ∈ Ω−

+ miny∈C |x− y| if x ∈ Ω+ ∪ C
I Normal n = ∇d , |∇d | = 1
I Curvature κ = ∇ · ∇d = ∇2d = ∆d

digital shape SDF d(x)
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Three types of motion

external velocity normal motion curvature motion
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Level Set Evolution Equations
I Contour motion is driven by PDE

ut + β|∇u| = 0

where β is the rate of evolution in the normal direction to
the contour.

I There are three basic types of motion:
I motion in the external velocity field V (x , y , t)

β = V (x , y , t) · n

I motion in the normal direction (balloon force, dilation).

β = a

I motion involving mean curvature (internal force)

β = −εκ

I Different motions require different numerical schemes.
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Level Set Evolution Equations: Normal Motion

I Normal motion:

ut (t ,x) + a(x)|∇u(t ,x)| = 0

u(0,x) = u0(x)

I If a(x) > 0 we can transform to boundary value problem:
Crossing times T (x) of zero level set in all points by solving
the Eikonal equation

a(x)|∇T (x)| = 1 ,
T (C0) = 0, where C0 is initial contour

I Efficient numerical algorithm — Fast Marching Method
(O(n log n))
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Normal Motion: Choice of a(x)

I Euclidean Distance (or SDF): a(x) = 1

I Geodesic distance: a(x) = 1 inside a mask and a(x)→ 0
outside the mask

12/59



Normal Motion: Choice of a(x)
I Segmentation: a(x) = g(|∇f (x)|), where g is a decreasing

function, e.g. g = 1/(1 + λ|∇Gσ ∗ f (x)|)
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Motion in the external velocity field

Motion in the external velocity field. The velocity vector is equal
to (−1,−1) for every grid point in this example.
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Motion in the External Velocity Field

Suppose an (external) velocity field V (x , y) = (v(x , y),w(x , y)).
Speed in normal direction is given by β = V · n. Therefore, we
have

ut + (V · n)|∇u| = ut + V · ∇u
|∇u|

|∇u| = 0

Then the evolution of interface embedded in implicit function u

is described by convection (or advection) equation:

ut + V · ∇u = 0

or we can write
ut + vux + wuy = 0
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Numerical Solution

ut + vux + wuy = 0

I Time discretization – forward Euler

ut =
un+1

i −un
i

τ

I Spatial discretization – upwind differencing
dimension-by-dimension (shown for x axis)

if v > 0 then ux =
un

i −un
i−1

h notation D−x

if v < 0 then ux =
un

i+1−un
i

h notation D+x

if v = 0 then 0
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Numerical Solution

ut + vux + wuy = 0

has iterative numerical scheme

un+1
ij = un

ij − τ

(
min(vij ,0)D+x

ij + max(vij ,0)D−x
ij +

min(wij ,0)D+y
ij + max(wij ,0)D−y

ij

)
,

where

D+x
ij =

un
i+1,j − un

ij

h
, D−x

ij =
un

ij − un
i−1,j

h

D+y
ij =

un
i,j+1 − un

ij

h
, D−y

ij =
un

ij − un
i,j−1

h

Higher order schemes exists.

Stability condition: h/τ > max{v ,w} for all grid points.
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Curvature Driven Motion, Example
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Shape Smoothing
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Mean Curvature Motion

Mean curvature motion (ε = 1.0)
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Curve Length and Shortening Flow
I Length of parametric curve can be computed as

L(C) =

∫ 1

0
|C′(q)|dq =

∫
C

ds

where |C′(q)| is parametrization speed and ds is
arc-length.

I It can be proved that the equation

∂C
∂t

= κn,

where κ is curvature and n is curve normal, gives the
fastest way to reduce L, i.e., moves the curve in the
direction of the gradient of the functional L.

I This equation is known as the Euclidean curve shortening
flow.
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Mean Curvature Motion

Mean curvature motion is given by the speed β = −εκ, where
ε > 0 is constant and κ is the curvature.

Then the evolution equation is:

ut = εκ|∇u|

Numerical scheme:

I Time discretization – forward Euler (first order)

ut =
un+1

i −un
i

τ

I Spatial discretization – central differencing (second order)
both for the gradient ∇u and the curvature
κ = ∇n = (u2

x uyy − 2uxuyuxy + u2
y uxx )/|∇u|3

ux =
un

i+1−un
i−1

2h notation D0x
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Numerical Solution

Equation
ut = εκ|∇u|

has iterative numerical scheme

un+1
ij = un

ij + τ(εK n
ij

√
(D0x

ij )2 + (D0y
ij )2),

where K n
ij is central difference approximation to κ in point

(xi , yj) and time nτ .

Stability condition: 4τε < h2. Therefore, τ needs to be O(h2),
i.e. it is smaller (one order of magnitude) than in the previous
case.
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Motion in the Normal Direction

Motion in the normal direction. a = 1.0.
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Motion in the Normal Direction
Internally generated velocity field β = a
Then the evolution of u is described by the equation:

ut + a|∇u| = 0

which leads to the numerical scheme

un+1
ij = un

ij − τ [max(a,0)∇+ + min(a,0)∇−],

where

∇+ =

[
min(D+x

ij ,0)2 + max(D−x
ij ,0)2+

min(D+y
ij ,0)2 + max(D−y

ij ,0)2

]1/2

∇− =

[
max(D+x

ij ,0)2 + min(D−x
ij ,0)2+

max(D+y
ij ,0)2 + min(D−y

ij ,0)2

]1/2

.

Stability condition: τa < h
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All Types of Motion Together

All three types of motion together. All vectors in V are equal to
(−1,−1), ε = 0.25 and a = 1.0.
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All Types of Motion Together
The general equation

ut + V · ∇u + a|∇u| = εκ|∇u|

is discretized with the numerical scheme

un+1
ij = un

ij − τ



[max(a,0)∇+ + min(a,0)∇−]+

+

[
max(wn

ij ,0)D−x
ij + min(wn

ij ,0)D+x
ij

+ max(vn
ij ,0)D−y

ij + min(vn
ij ,0)D+y

ij

]
−

−[εK n
ij

√
(D0x

ij )2 + (D0y
ij )2]


,

Note: It’s a combination of previous formulas.

Stability condition: The most restrictive (curvature) term forces
τ = O(h2)
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Active Contours: Snakes

I Active contour model (snakes) can be written as:

EAC(C) =

∫ 1

0

(
α|C′(q)|2 + β|C′′(q)|2

)
dq +

∫ 1

0
P(C(q))dq,

where P is the potential field.
I Often P(C(q)) = g(|∇Gσ ∗ I(C(q))|) where g : [0,∞)→ R+

is a strictly decreasing function such that g(r)→ 0 as
r →∞.

I Problem: (internal) energy depends on curve
parametrization, i.e. it changes if we substitute q = φ(r),
φ : [c,d ]→ [0,1], φ′ > 0

I This is an undesirable property, since parametrizations are
not related to the geometry of the curve (or object
boundary), but only to the velocity they are traveled.
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Geodesic Active Contours
I Caselles et.al. 1995, Kichenassamy et al. 1995
I Curve with minimal geodesic length is searched.

EGAC(C) =

∫ L(C)

0
g(|∇Gσ ∗ I(C(s))|)ds =

=

∫ 1

0
g(|∇Gσ ∗ I(C(q))|)|C′(q)|dq

where g : [0,∞)→ R+ is a strictly decreasing function
such that g(r)→ 0 as r →∞, e.g.,

g(|∇Gσ ∗ I(x , y)|) =
1

1 + |∇Gσ ∗ I(x , y)|

I The curve is attracted by image edges, where the weight
g(|∇Gσ ∗ I(C(q))|) is small.

I Energy functional is not convex and therefore there are
several local minima.
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Geodesic Active Contours Advantages

I Do not depend on parametrization of curve C
I Allow topology changes
I Curve shortening flow is embeded
I Fast computation with level sets
I Straightforward extension to 3D
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Geodesic Active Contours, Evolution Equation

I Evolution equation (i.e. Euler-Lagrange equation with ∂C
∂t

on the left side) for geodesic active contours is

∂C
∂t

= (gκ− (∇g · n)) n

where n is curve normal (vector) and κ is curvature (scalar)
[see E. Sakhaee, “A Tutorial on Active Contours”, 2014]

I This equation can be rewritten in level-set framework.
I The curve is embeded in SDF u with evolution speed
ν = gκ−∇g · n.
The evolution equation becomes

∂u
∂t

= gκ|∇u| − ∇g · ∇u
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Geodesic Active Contours, Evolution Equation
I Curve with minimal geodesic length is searched.

EGAC(C) =

∫ 1

0
g(|∇Gσ ∗ I(C(q))|)|C′(q)|dq

g(|∇Gσ ∗ I(x , y)|) =
1

1 + |∇Gσ ∗ I(x , y)|
I The evolution equation becomes

∂u
∂t

= gκ|∇u| − ∇g · ∇u

I Illustration
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Geodesic Active Contours, Evolution Equation

I The evolution equation

∂u
∂t

= gκ|∇u| − ∇g · ∇u

contains curvature motion and velocity field motion.
I It is solved using level set methods
I We can add normal direction motion (baloon force)

∂u
∂t

= (c + κ)g|∇u| − ∇g · ∇u
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Geodesic Active Contours, Evolution Equation

I The most general form

∂u
∂t

= (c + εκ)g|∇u|+ β(∇P · ∇u)

where P = |∇Gσ ∗ I|, c is a constant and

g(|∇Gσ ∗ I(x , y)|) =
1

1 + |∇Gσ ∗ I(x , y)|p

I Parameters:
ε, β, c, σ and p
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Geodesic Active Contours, Iterative Scheme

I The equation

ut = (c + εκ)g|∇u|+ β∇P · ∇u

consists of three types of motion we have discussed
before:

I normal direction motion with speed cg(|∇Gσ ∗ I(x , y)|)
I curvature motion multilied by a factor εg(|∇Gσ ∗ I(x , y)|)
I external velocity field motion given by β∇P.

I Therefore, we have

uk+1
ij = uk

ij +τ ·[Normal(cg)+Curvature(εg)+Velocity(β∇P)].
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Geodesic Active Contours: Example

Initial contour Result
τ = 0.25, c = 1, ε = 0.5,
β = 0.5,p = 2, σ = 2.0
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Geodesic Active Contours: Example
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Geodesic Active Contours: Example
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Geodesic Active Contours: Example

I img15
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Introduction
I Contour of interest C (surface or curve) is the (zero) level set

of an implicit function u, i.e. C = {x : u(x) = 0}

I The evolution is steered by level set methods modifying u.

I We don’t need to recompute u in the whole domain to track
one contour.
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General Procedure
I Embed initial curve into implicit function u as its zero level set.

One can compute signed distance function using fast marching
algorithm to get u for any contour.

I Solve the evolution equation in a narrow band around the
contour of interest only.

Whole domain Narrow band

I We have to reinitialize the narrow band regularly.
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Reinitialization

initial image SDF

after 50 iterations SDF
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Narrow Band Reinitialization
I Before the contour leaves the narrow band we must reinitialize

it.

Before reinitialization After reinitialization

I Narrow band reinitialization procedure can be based on the
fast marching algorithm.

I Maintaining sign distance function (SDF) around the contour
simplifies numerical formulas.
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Simplifications of Formulas

I Maintaining sign distance function around the contour
simplifies numerical formulas.

I For SDF we have |∇u| = 1 and therefore the normal is

n(x) =
∇u
|∇u|

= ∇u

and the curvature is

κ = ∇ · n = ∇ · ∇u = ∇2u = ∆u,

i.e. it is simply the Laplacian of u, i.e.
κ(x) = ∆u = uxx + uyy + uzz .
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Time complexity

I Narrow band method significantly reduces time complexity of
the evolution procedure.

I Instead of O(ndim), where n is the number of grid points in one
dimension and dim is the number of dimensions, we have time
complexity O(kndim−1) where k is narrow band width.

I The price is the necessity of regular band reinitialization.
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Summary
I We discussed numerical schemes for three different types of

motion

I motion in the external velocity field

I mean curvature motion

I motion in the normal direction

I Curvature motion smooths the contour

I Geodesic active contours seeks curve with minimal geodesic
length.

I We discussed active contours in the context of level set
methods.

I Fast implementations of level set methods handle implicit
function around zero level set only (e.g., narrow band method).
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