Introduction to Level Set Methods and Fast Marching Algorithm

Dmitry Sorokin

Laboratory of Mathematical Methods of Image Processing Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

Spring semester 2020

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Level Set Methods

Basic Idea

Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Level Sets: Definition

- Let f(x, y) be an image and *c* is a constant.
- A set

$$\{(x,y):f(x,y)=c\}$$

is called a *c*-level set of a function *f*.

- When the number of variables is two, this is a level curve, if it is three this is a level surface.
- We will use term level contour in both cases.

Level contours

 Level contours of an image at different levels are shown in red.

Parametric Curve and Surface

• The parametric curve on a plane is a mapping:

$$C(s): [0,1] \rightarrow \mathbb{R}^2, \quad s \mapsto C(s) = (x(s), y(s))^T.$$

The parametric surface in a volume is a mapping:

$$C(s,r): \Omega = [0,1] \times [0,1] \rightarrow \mathbb{R}^3$$

$$(s,r)\mapsto C(s,r)=(x(s,r),y(s,r),z(s,r))$$

If curve C(s) or surface C(s, r) evolves in time it becomes C(s, t) or C(s, r, t)

• To simplify notations we omit parameters (s, r), so

C(t) is a <u>curve</u> or <u>surface</u> evolving in time C(t) is a vector in \mathbb{R}^2 (curve) or \mathbb{R}^3 (surface)

Embedding Curve Evolution in Level Set

Consider the curve C(t) evolution in time t in the most general form:

$$\partial_t C = \beta \mathbf{n}$$

The evolving curve can be represented in form of k-level set of some higher dimension function (i.e. image)

$$u(x, y, t) : \mathbb{R}^2 \times [0, T) \to \mathbb{R}$$
,

such that

u(x(t), y(t), t) = k for all $(x(t), y(t)) \in C(t)$

Embedding Curve Evolution in Level Set

If we differentiate the equation u(x(t), y(t), t) = k with respect to t

$$0 = \frac{du}{dt} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial u}{\partial t} = (\nabla u)^T \partial_t C + \partial_t u = \dots$$

and plug curve evolution equation $\partial_t C = \beta \mathbf{n}$

$$\cdots = (\nabla u)^T \beta \mathbf{n} + \partial_t u = -(\nabla u)^T \beta \frac{\nabla u}{|\nabla u|} + \partial_t u$$

we get

$$\partial_t u = \beta |\nabla u|.$$

Equivalence Between Curve And Level Set Evolution

Any curve evolution in the direction of its normal n

 $\partial_t C = \beta \mathbf{n}$

can be embedded as a level set into the image evolution

 $\partial_t u = \beta |\nabla u|.$

- Parameter β controls the rate of evolution.
- Conversely, one can also show that any image evolution of type ∂_tu = β|∇u| leads to the evolution equation ∂_tC = βn for all its level curves.
- Initial condition: f(x, y) = u(x, y, 0) and C(0) is a level set of f.

Dilation of Level Contours

- Initial contours of an image at different levels are in red.
- Contours of dilated image using disk structuring element with radius 20 ($t = 20, \beta = 1$) are in yellow.

Here by changing the function u (image) we change the contour C

Level Set Methods, Idea

- Contour C is represented as (zero) level set of an implicit function u.
- Contour evolution is driven by the following general PDE:

$$\partial_t u = \beta |\nabla u|.$$

i.e. contour points are moving in the normal direction.

- Level set methods comprise numerical algorithms for the solution of the equation above. The numerical algorithms differ for particular β, which can be a function of u, another image, etc. (the choice of β is application dependent).
- u is not the image we are processing, it's an embedding function that represents our evolving contour

Level Set Methods, Applications

 Computer animation (Shrek, Poseidon, ...), simulation of water, gas, etc.

Source: http://www.digitalmediafx.com/

Source: http://graphics.stanford.edu/~losasso/

Image inpainting

Source: http://www.iua.upf.es/~mbertalmio/restoration.html

Image segmentation

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Implicit Functions

- Let f(x, y) is a function (image) $f : \Omega \to \mathbb{R}$.
- Implicit function is a function defined by an equation

$$f(x,y)=0$$

meaning one have to solve an equation f(x, y) = 0 to evaluate the function.

The solution of the equation is the zero level set of f.

Easy inside vs. outside test

Function u : Ω → ℝ divides an image plane Ω into three parts

Inside

$$\Omega^- = \{x: u(x) < 0\}$$

Outside

$$\Omega^+ = \{x : u(x) > 0\}$$

Boundary (contour)

$$\partial \Omega = C = \{x : u(x) = 0\}$$

Easy set operations

Let $u_1 : \Omega_1 \to \mathbb{R}$ and $u_2 : \Omega_1 \to \mathbb{R}$ be two implicit functions. Then

• Inside part of $u = \max(u_1, u_2)$ is the intersection

$$\Omega^- = \Omega_1^- \cap \Omega_2^-$$

of the inside parts.

lnside part of $u = \min(u_1, u_2)$ is the union

$$\Omega^- = \Omega_1^- \cup \Omega_2^-$$

of the inside parts.

etc.

Easy Normal Computation

- ▶ Let $C = {$ **x** : u(**x** $) = 0} be a curve ($ **x** $∈ <math>\mathbb{R}^2$) or a surface (**x** ∈ \mathbb{R}^3).
- ► Then the unit normal vector at the point **x** is defined by

$$\mathbf{n}(\mathbf{x}) = \frac{\nabla u}{|\nabla u|}$$

Easy Curvature Computation

• The curvature is defined by (= mean curvature for \mathbb{R}^3)

$$\kappa(\mathbf{x}) = \nabla \cdot \mathbf{n}(\mathbf{x}) = \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right),$$

as the divergence of the direction of the gradient of *u*.

The curvature can be computed in terms of the partial derivatives as:

$$\kappa(\mathbf{x}) = (u_x^2 u_{yy} - 2u_x u_y u_{xy} + u_y^2 u_{xx})/|\nabla u|^3$$

$$\kappa(\mathbf{x}) = (u_x^2 u_{yy} - 2u_x u_y u_{xy} + u_y^2 u_{xx} + u_x^2 u_{zz} - 2u_x u_z u_{xz} + u_z^2 u_{xx} + u_y^2 u_{zz} - 2u_y u_z u_{yz} + u_z^2 u_{yy}) / |\nabla u|^3$$

Topology changes

- Connectivity is not (and need not be) kept.
- Easy topology changes (e.g., change in the number of components, creation of holes, etc.).

Extraction of Zero Contour Level

- Marching squares/cubes algorithms approximate boundary between positive and negative points.
- One can also easily detect border pixels of inside (outside) regions.

Implicit Functions Can Represent Any Contour

We can embed any closed curve C = ∂Ω into its signed distance function d defined by:

$$d(\mathbf{x}) = \begin{cases} -\min_{\mathbf{y}\in C} |\mathbf{x} - \mathbf{y}| & \text{if } \mathbf{x} \in \Omega^- \\ +\min_{\mathbf{y}\in C} |\mathbf{x} - \mathbf{y}| & \text{if } \mathbf{x} \in \Omega^+ \cup C \end{cases}$$

Notice, that due to Euclidean distance we have

$$|\nabla d| = 1$$

It simplifies and improves numerical computations.

$$n = \nabla d$$
 and $\kappa = \nabla \cdot \nabla d = \nabla^2 d = \Delta d$,

where Δd is the Laplacian of d, i.e. $\Delta d = d_{xx} + d_{yy} + d_{zz}$.

Signed Distance Function (SDF): Example

digital shape

distance $d(\mathbf{x})$ from its boundary

Properties of Implicit Functions, Summary

- Easy computation of geometric properties (normal, curvature)
- Easy inside vs. outside test
- Easy set operations (e.g. intersection, union, ...)
- Discretization on a regular grid leads to a digital image
- Boundary is defined implicitly
 - It must be computed, (e.g. by marching squares or marching cubes algorithm)
 - Connectivity is not (and need not be) kept, easy topology changes during its evolution
- Formulation does not depend on the number of dimensions (easy generalization from 2D to 3D images - or even more).

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Curve Evolution using Level Sets

The evolution of the contour

 $\partial_t C(t) = \beta \mathbf{n}$

is equivalent to PDE

$$u_t = \beta |\nabla u| \tag{1}$$

where β is the rate of evolution in the normal direction to the contour.

- We can evolve the contour using the following steps:
 - 1. Determine the embedding function (image) u(x, y, t) e.g. by SDF
 - 2. Evolve it locally according to the level set flow (1)
 - 3. Recover the zero-level set iso-surface (curve position) C = (x, y) : u(x, y, t) = 0
 - Re-initialize the implicit function u(x, y, t) as SDF and Go to step 1

Level Set Evolution Equations: Basic Motions Types

Contour motion is driven by PDE

 $u_t = \beta |\nabla u|$

where β is the rate of evolution in the normal direction to the contour.

There are three basic types of motion:

• motion under velocity field $V(\mathbf{x}, t)$

$$\beta = F_{ext} = V(\mathbf{x}, t) \cdot \mathbf{n}$$

motion in the normal direction (balloon force, dilation)

$$\beta = a$$

motion under mean curvature (internal force)

$$\beta = \textit{F}_{\textit{curv}} = -\epsilon \kappa$$

 Different motions require different numerical solutions (See the next Lecture).

Motion under external velocity field. The velocity vector is equal to (-1, -1) for every grid point in this example.

Motion in the normal direction. a = 1.0.

Motion under mean curvature ($\epsilon = 1.0$)

All three types of motion together. All vectors in *V* are equal to (-1, -1), $\epsilon = 0.25$ and a = 1.0.

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Fast Marching Algorithm – Idea

Assume, that we have an equation

$$u(\mathbf{x},t)_t = a(\mathbf{x}) |\nabla u(\mathbf{x},t)|,$$

$$u(\mathbf{x},0) = u_0$$

where always $a(\mathbf{x}) > 0$. Then the contour is moving in one direction only and every point is visited only once.

- The value of a(x) describes how fast the contour may propagate through the given point.
- The evolution equation is equivalent to the following equation

 $a(\mathbf{x})|\nabla T(\mathbf{x})| = 1$, $T(C_0) = 0$,

where $C_0 = \{(x, y) | u(x, y, 0) = 0\}$ is the initial position of the boundary and T(x, y) is the crossing times of zero level set in all points.

Equivalence to Eikonal equation

The equations are equivalent (see Slide 9)

$$u(\mathbf{x}, t)_t = a(\mathbf{x}) |\nabla u(\mathbf{x}, t)|, \qquad \partial_t C(t) = a(\mathbf{x}) \mathbf{n},$$

 $u(\mathbf{x}, 0) = u_0 \qquad C(0) = C_0$
Let $T(x, y)$ be the time when the curve $C(t)$ reaches the

е point **x**:

$$T(C(t)) = t \implies \left\{\frac{\partial}{\partial t}\right\} \implies \nabla T(\mathbf{x}) \cdot C_t = 1 \implies \nabla T(\mathbf{x}) \cdot \left(\mathbf{a}(\mathbf{x}) \frac{\nabla T(\mathbf{x})}{|\nabla T(\mathbf{x})|}\right) = 1 \implies$$

thus we get the Eikonal equation

$$a(\mathbf{x}) \cdot |\nabla T(\mathbf{x})| = 1$$
,
 $T(C_0) = 0$

where $C_0 = \{(x, y) | u(x, y, 0) = 0\}$ is the initial position of the boundary.

Important Speed Functions

- If a = 1 for every pixel, we obtain (in T) the shortest Euclidean distance to the initial contour in every pixel.
- If a = 1 inside a mask and a → 0 outside the mask, we obtain geodesic distance within the mask to the contour.
- ► If $a = g(|\nabla f(x, y)|)$, where *g* is a decreasing function, e.g. ► $g = \frac{1}{1+\lambda|\nabla G_{\sigma} * f(x, y)|}$ or $g = e^{-\lambda|\nabla G_{\sigma} * f(x, y)|}$,

which goes to 0 for points with the high gradient and is close to 1 for points with almost zero gradient, we obtain fast marching segmentation algorithm.

Euclidean Distance Map: Example

The inside of a contour

Distance from outside Distance from inside

Geodesic Distance Map: Example

Longest geodesic from x in X Geodesic distance function

Segmentation using fast marching method, Example 1

3D Example - Interphase Chromosome Reconstruction

- 5-inputdata3d.avi
- 7-fmmcontours.avi

3D Example - Brain Surface Reconstruction

- 10-brainslides.avi
- 11-braincontours.avi

3D Example - Brain Surface Reconstruction, Result

a) $T=105,\,{\rm pohled}$ zboku

b) T = 105, pohled zezadu

c) T = 105, pohled zespodu

d) T = 105, 2D hranice – řezy x, y, z e) T = 105, 2D hranice – řezy y, z f) T = 105, 2D hranice – řez z

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm

Theory Algorithm

Summary

Fast Marching Algorithm

We want to solve

$$a(x,y)|\nabla T(x,y)| = 1$$
,
 $T(C_0) = 0$,

where $C_0 = \{(x, y) | u(x, y, 0) = 0\}$ is the initial position of the boundary

We assume grid with distance h₁ and h₂ between grid lines.

$$x_i := ih_1, \quad i = 0, 1, \dots, N-1$$

 $y_j := jh_2, \quad j = 0, 1, \dots, M-1$
 $a(x_i, y_j) \approx a_{i,j}$
 $T(x_i, y_j) \approx T_{i,j}$

Fast Marching Algorithm

Finite differences

$$D_{ij}^{-x}T = \frac{T_{i,j} - T_{i-1,j}}{h}$$
$$D_{ij}^{+x}T = \frac{T_{i+1,j} - T_{i,j}}{h}$$
$$D_{ij}^{-y}T = \frac{T_{i,j} - T_{i,j-1}}{h}$$
$$D_{ij}^{+y}T = \frac{T_{i,j+1} - T_{i,j}}{h}$$

Numerical scheme (upwind)

$$\max \left(D_{ij}^{-x} T, D_{ij}^{+x} T, 0 \right)^2 + \max \left(D_{ij}^{-y} T, D_{ij}^{+y} T, 0 \right)^2 = \frac{1}{a_{i,j}^2}$$
(2)

Fast Marching: Input and Initialization

- Input
 - Speed function a_{ij} > 0 defined on discrete grid G.
 - ▶ Initial contour $C_0 = \{(x_i, y_j) \in G : T(x_i, y_j) = 0\}$
- Output: Arrival times T_{ij}
- Initialization:
 - Set $Trial = C_0$, i.e. $T_{ij} = 0$ for $(x_i, y_j) \in Trial$.
 - Set $Far = G \setminus C_0$, $T_{ij} = \infty$ for $(x_i, y_j) \in Far$.
 - Set Known = Ø.

Fast Marching: Main loop

- Find $p \in Trial$ having the smallest arrival time T(p),
- Exclude *p* from *Trial* and include it into *Known*,
- For each neighbour q of p do
 - 1. Compute the new arrival time $T_{new}(q)$ using (2).
 - 2. If $T_{new}(q) < T(q)$ then $T(q) = T_{new}(q)$.
 - 3. If $q \in Far$ then include it into *Trial*.
- Break main loop and stop the algorithm as soon as *Trial* set is empty.

Trial set

- ▶ We can implement *Trial* set as a min-heap data structure.
- It is an ordered balanced binary tree.
- Operation PushElement costs O(log n)
- Operation PopMinElement costs O(log n)
- One can implement it using an array.

Fast Marching Algorithm – Discussion

- It considers one directional motion only.
- a is always positive.
- Fast computation (Non iterative process in time!) time complexity O(n log n), where n is the number of grid points.
- Easy to implement (uses min-heap structure).
- It is a general algorithm (can compute Euclidean as well as geodesic distance maps, perform segmentation, ...)
- In the case of segmentation, the problem of the ideal crossing-time arises.

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory Algorithm

Summary

Summary

- Contour is a zero level set of an implicit function u
- Evolution is driven by a special PDE in *u*.
- Evolution of *u* leads to the evolution of all its contours.
- Implicit representation of contours has many advantages
 - Easy computation of geometric properties (normal, curvature)
 - Discretization leads to a digital image
 - Easy topology changes
- One directional motion can be computed by means of fast marching algorithm.

Level Set Methods

Basic Idea Nice Properties of Implicit Functions Evolution Equations

Fast Marching Algorithm Theory

Algorithm

Summary

- S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer 2003
- S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer 2003
- R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer 2004