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Level Sets: Definition

I Let f (x , y) be an image and c is a constant.
I A set

{(x , y) : f (x , y) = c}

is called a c-level set of a function f .
I When the number of variables is two, this is a level curve, if

it is three this is a level surface.
I We will use term level contour in both cases.
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Level contours
I Level contours of an image at different levels are shown in

red.

level 50 level 100

level 150 level 200
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Parametric Curve and Surface

I The parametric curve on a plane is a mapping:

C(s) : [0,1]→ R2, s 7→ C(s) = (x(s), y(s))T .

I The parametric surface in a volume is a mapping:

C(s, r) : Ω = [0,1]× [0,1]→ R3

(s, r) 7→ C(s, r) = (x(s, r), y(s, r), z(s, r))

I If curve C(s) or surface C(s, r) evolves in time it becomes
C(s, t) or C(s, r , t)

I To simplify notations we omit parameters (s, r), so

C(t) is a curve or surface evolving in time

C(t) is a vector in R2 (curve) or R3 (surface)
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Embedding Curve Evolution in Level Set
I Consider the curve C(t) evolution in time t in the most

general form:
∂tC = βn

I The evolving curve can be represented in form of k -level
set of some higher dimension function (i.e. image)

u(x , y , t) : R2 × [0,T )→ R ,

such that

u(x(t), y(t), t) = k for all (x(t), y(t)) ∈ C(t)
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Embedding Curve Evolution in Level Set

I If we differentiate the equation u(x(t), y(t), t) = k with
respect to t

0 =
du
dt

=
∂u
∂x

∂x
∂t

+
∂u
∂y

∂y
∂t

+
∂u
∂t

= (∇u)T∂tC + ∂tu = . . .

and plug curve evolution equation ∂tC = βn

· · · = (∇u)Tβn + ∂tu = −(∇u)Tβ
∇u
|∇u|

+ ∂tu

we get
∂tu = β|∇u|.
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Equivalence Between Curve And Level Set Evolution

I Any curve evolution in the direction of its normal n

∂tC = βn

can be embedded as a level set into the image evolution

∂tu = β|∇u|.

I Parameter β controls the rate of evolution.
I Conversely, one can also show that any image evolution of

type ∂tu = β|∇u| leads to the evolution equation ∂tC = βn
for all its level curves.

I Initial condition: f (x , y) = u(x , y ,0) and C(0) is a level set
of f .
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Dilation of Level Contours

I Initial contours of an image at different levels are in red.
I Contours of dilated image using disk structuring element

with radius 20 (t = 20, β = 1) are in yellow.

level 50 level 100 level 150 level 200

I Here by changing the function u (image) we change the
contour C
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Level Set Methods, Idea

I Contour C is represented as (zero) level set of an implicit
function u.

I Contour evolution is driven by the folowing general PDE:

∂tu = β|∇u|.

i.e. contour points are moving in the normal direction.
I Level set methods comprise numerical algorithms for the

solution of the equation above. The numerical algorithms
differ for particular β, which can be a function of u, another
image, etc. (the choice of β is application dependent).

I u is not the image we are processing, it’s an embedding
function that represents our evolving contour
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Level Set Methods, Applications

I Computer animation (Shrek, Poseidon, ...), simulation of
water, gas, etc.

Source: http://www.digitalmediafx.com/ Source: http://graphics.stanford.edu/~losasso/

I Image inpainting

Source: http://www.iua.upf.es/~mbertalmio/restoration.html

I Image segmentation
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Implicit Functions

I Let f (x , y) is a function (image) f : Ω→ R.
I Implicit function is a function defined by an equation

f (x , y) = 0

meaning one have to solve an equation f (x , y) = 0 to
evaluate the function.

I The solution of the equation is the zero level set of f .
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Easy inside vs. outside test

I Function u : Ω→ R divides an image plane Ω into three
parts
I Inside

Ω− = {x : u(x) < 0}
I Outside

Ω+ = {x : u(x) > 0}
I Boundary (contour)

∂Ω = C = {x : u(x) = 0}
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Easy set operations

Let u1 : Ω1 → R and u2 : Ω1 → R be two implicit functions. Then

I Inside part of u = max(u1,u2) is the intersection

Ω− = Ω−1 ∩ Ω−2

of the inside parts.
I Inside part of u = min(u1,u2) is the union

Ω− = Ω−1 ∪ Ω−2

of the inside parts.
I etc.
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Easy Normal Computation

I Let C = {x : u(x) = 0} be a curve (x ∈ R2) or a surface
(x ∈ R3).

I Then the unit normal vector at the point x is defined by

n(x) =
∇u
|∇u|
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Easy Curvature Computation

I The curvature is defined by (= mean curvature for R3)

κ(x) = ∇ · n(x) = ∇ ·
(
∇u
|∇u|

)
,

as the divergence of the direction of the gradient of u.
I The curvature can be computed in terms of the partial

derivatives as:

κ(x) = (u2
x uyy − 2uxuyuxy + u2

y uxx )/|∇u|3

κ(x) =(u2
x uyy − 2uxuyuxy + u2

y uxx + u2
x uzz − 2uxuzuxz

+ u2
z uxx + u2

y uzz − 2uyuzuyz + u2
z uyy )/|∇u|3
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Topology changes

I Connectivity is not (and need not be) kept.
I Easy topology changes (e.g., change in the number of

components, creation of holes, etc.).
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Extraction of Zero Contour Level

I Marching squares/cubes algorithms approximate boundary
between positive and negative points.

I One can also easily detect border pixels of inside (outside)
regions.
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Implicit Functions Can Represent Any Contour

I We can embed any closed curve C = ∂Ω into its signed
distance function d defined by:

d(x) =

{
−miny∈C |x− y| if x ∈ Ω−

+ miny∈C |x− y| if x ∈ Ω+ ∪ C

I Notice, that due to Euclidean distance we have

|∇d | = 1

I It simplifies and improves numerical computations.

n = ∇d and κ = ∇ · ∇d = ∇2d = ∆d ,

where ∆d is the Laplacian of d , i.e. ∆d = dxx + dyy + dzz .
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Signed Distance Function (SDF): Example

digital shape distance d(x) from its boundary
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Properties of Implicit Functions, Summary

I Easy computation of geometric properties (normal,
curvature)

I Easy inside vs. outside test
I Easy set operations (e.g. intersection, union, ...)
I Discretization on a regular grid leads to a digital image
I Boundary is defined implicitly

I It must be computed, (e.g. by marching squares or
marching cubes algorithm)

I Connectivity is not (and need not be) kept, easy topology
changes during its evolution

I Formulation does not depend on the number of dimensions
(easy generalization from 2D to 3D images - or even more).
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Curve Evolution using Level Sets
I The evolution of the contour

∂tC(t) = βn

is equivalent to PDE

ut = β|∇u| (1)

where β is the rate of evolution in the normal direction to
the contour.

I We can evolve the contour using the following steps:
1. Determine the embedding function (image) u(x , y , t) e.g. by

SDF
2. Evolve it locally according to the level set flow (1)
3. Recover the zero-level set iso-surface (curve position)

C = (x , y) : u(x , y , t) = 0
4. Re-initialize the implicit function u(x , y , t) as SDF and Go to

step 1
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Level Set Evolution Equations: Basic Motions Types
I Contour motion is driven by PDE

ut = β|∇u|

where β is the rate of evolution in the normal direction to
the contour.

I There are three basic types of motion:
I motion under velocity field V (x, t)

β = Fext = V (x, t) · n

I motion in the normal direction (balloon force, dilation)

β = a

I motion under mean curvature (internal force)

β = Fcurv = −εκ

I Different motions require different numerical solutions (See
the next Lecture).
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Example 1

Motion under external velocity field. The velocity vector is equal
to (−1,−1) for every grid point in this example.
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Example 2

Motion in the normal direction. a = 1.0.
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Example 3

Motion under mean curvature (ε = 1.0)
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Example 4

All three types of motion together. All vectors in V are equal to
(−1,−1), ε = 0.25 and a = 1.0.
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Fast Marching Algorithm – Idea
I Assume, that we have an equation

u(x, t)t = a(x)|∇u(x, t)| ,
u(x,0) = u0

where always a(x) > 0. Then the contour is moving in one
direction only and every point is visited only once.

I The value of a(x) describes how fast the contour may
propagate through the given point.

I The evolution equation is equivalent to the following
equation

a(x)|∇T (x)| = 1 ,
T (C0) = 0,

where C0 = {(x , y)|u(x , y ,0) = 0} is the initial position of
the boundary and T (x , y) is the crossing times of zero
level set in all points.
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Equivalence to Eikonal equation
I The equations are equivalent (see Slide 9)

u(x, t)t = a(x)|∇u(x, t)| ,
u(x,0) = u0

∂tC(t) = a(x)n ,
C(0) = C0

I Let T (x , y) be the time when the curve C(t) reaches the
point x:

T (C(t)) = t =⇒
{
∂

∂t

}
=⇒ ∇T (x) · Ct = 1 =⇒

∇T (x) ·
(

a(x)
∇T (x)

|∇T (x)|

)
= 1 =⇒

thus we get the Eikonal equation

a(x) · |∇T (x)| = 1 ,
T (C0) = 0

where C0 = {(x , y)|u(x , y ,0) = 0} is the initial position of
the boundary.
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Important Speed Functions

I If a = 1 for every pixel, we obtain (in T ) the shortest
Euclidean distance to the initial contour in every pixel.

I If a = 1 inside a mask and a→ 0 outside the mask, we
obtain geodesic distance within the mask to the contour.

I If a = g(|∇f (x , y)|), where g is a decreasing function, e.g.
I g = 1

1+λ|∇Gσ∗f (x,y)| or g = e−λ|∇Gσ∗f (x,y)|,

which goes to 0 for points with the high gradient and is
close to 1 for points with almost zero gradient, we obtain
fast marching segmentation algorithm.
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Euclidean Distance Map: Example

The inside of Distance from outside Distance from inside
a contour
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Geodesic Distance Map: Example

Longest geodesic from x in X Geodesic distance function
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Segmentation using fast marching method, Example 1
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3D Example - Interphase Chromosome
Reconstruction

I 5-inputdata3d.avi
I 7-fmmcontours.avi
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3D Example - Brain Surface Reconstruction

I 10-brainslides.avi
I 11-braincontours.avi
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3D Example - Brain Surface Reconstruction, Result
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Fast Marching Algorithm

I We want to solve

a(x , y)|∇T (x , y)| = 1 ,
T (C0) = 0,

where C0 = {(x , y)|u(x , y ,0) = 0} is the initial position of
the boundary

I We assume grid with distance h1 and h2 between grid
lines.

xi := ih1, i = 0,1, . . . ,N − 1

yj := jh2, j = 0,1, . . . ,M − 1

a(xi , yj) ≈ ai,j

T (xi , yj) ≈ Ti,j
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Fast Marching Algorithm

I Finite differences

D−x
ij T =

Ti,j − Ti−1,j

h

D+x
ij T =

Ti+1,j − Ti,j

h

D−y
ij T =

Ti,j − Ti,j−1

h

D+y
ij T =

Ti,j+1 − Ti,j

h
I Numerical scheme (upwind)

max
(

D−x
ij T ,D+x

ij T ,0
)2

+max
(

D−y
ij T ,D+y

ij T ,0
)2

=
1

a2
i,j

(2)
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Fast Marching: Input and Initialization
I Input

I Speed function aij > 0 defined on discrete grid G.
I Initial contour C0 = {(xi , yj ) ∈ G : T (xi , yj ) = 0}

I Output: Arrival times Tij
I Initialization:

I Set Trial = C0, i.e. Tij = 0 for (xi , yj ) ∈ Trial .
I Set Far = G \ C0, Tij =∞ for (xi , yj ) ∈ Far .
I Set Known = ∅.
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Fast Marching: Main loop
I Find p ∈ Trial having the smallest arrival time T (p),
I Exclude p from Trial and include it into Known,
I For each neighbour q of p do

1. Compute the new arrival time Tnew (q) using (2).
2. If Tnew (q) < T (q) then T (q) = Tnew (q).
3. If q ∈ Far then include it into Trial .

I Break main loop and stop the algorithm as soon as Trial
set is empty.
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Trial set

I We can implement Trial set as a min-heap data structure.
I It is an ordered balanced binary tree.
I Operation PushElement costs O(log n)

I Operation PopMinElement costs O(log n)

I One can implement it using an array.
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Fast Marching Algorithm – Discussion

I It considers one directional motion only.
I a is always positive.
I Fast computation (Non iterative process in time!) – time

complexity O(n log n), where n is the number of grid points.
I Easy to implement (uses min-heap structure).
I It is a general algorithm (can compute Euclidean as well as

geodesic distance maps, perform segmentation, ...)
I In the case of segmentation, the problem of the ideal

crossing-time arises.
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Summary

I Contour is a zero level set of an implicit function u
I Evolution is driven by a special PDE in u.
I Evolution of u leads to the evolution of all its contours.
I Implicit representation of contours has many advantages

I Easy computation of geometric properties (normal,
curvature)

I Discretization leads to a digital image
I Easy topology changes

I One directional motion can be computed by means of fast
marching algorithm.
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