Active Contours (Snakes)

Dmitry Sorokin

Laboratory of Mathematical Methods of Image Processing Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

Spring semester 2020

Course outline

- Active Contours (Snakes)
- Level Set Methods: Introduction and Fast Marching Algorithm
- Level Set Methods: Numerical Schemes
- Segmentation using Level Set Methods: Region Based Active Contours

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Segmentation What Is Segmentation?

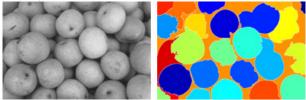
Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

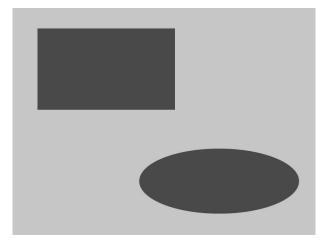
Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

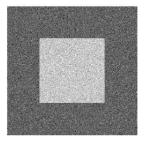
What is segmentation?

Partition of the image domain into connected regions X₁,..., X_n.

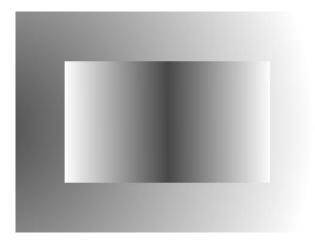


- In the ideal case, every region X_i represents an object in the real world.
- One of the most difficult areas in image analysis: illumination differences, occlusions, lack of a priori knowledge
- No general method exists.









Frequent Assumptions

- Region Based Segmentation: Pixels that belong to the same segment have similar grey values.
- Edge Based Segmentation: There is a jump in the grey values between two adjacent regions. Example: Zero crossings of the Laplacian yield an edge based segmentation with closed contours as segment boundaries.
- Texture Segmentation: Segmenting textures requires a preprocessing step: computation of a suitable texture descriptor. The goal is to achieve almost homogeneous descriptor values within each segment.
- Machine learning: Segmentation principle is derived directly from images during training stage. Training dataset is required. Segmentation quality depends a lot on the training dataset quality.

Segmentation

What Is Segmentation?

Classical Methods

Machine learning Energy-Based Approaches

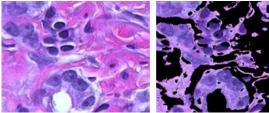
Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Classical methods

- Thresholding
 - Simplest method
 - No spatial context, choice of threshold

- Color-based Segmentation (e.g. K-means)
 - Uses color information
 - No spatial context again



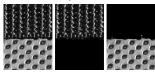
Classical methods

Watershed algorithm

- Need to compute gradient magnitude
- Number of objects corresponds to the number of minima.

Texture methods

 Right choice of texture descriptors (homogeneous descriptor values within each segment)



Segmentation

What Is Segmentation? Classical Methods

Machine learning

Energy-Based Approaches

Active Contour Model, Snakes

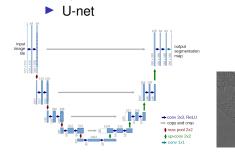
Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

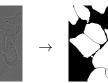
Machine learning

Example

Classic machine learning

- SVM, Boosting, Random Forests etc.
- Since 2012 mostly Convolutional Neural Networks aka Deep Learning





Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

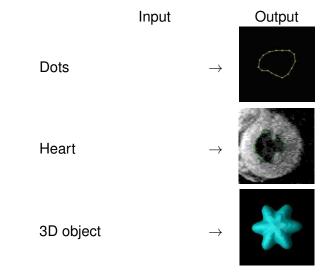
Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Energy-based Approaches

Idea

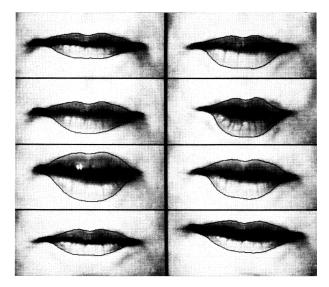
- Contour (i.e, curve or surface) with minimal energy is usually searched.
- Energy is typically composed of two terms: Internal energy - includes shape constraints External energy - includes image data constraints
- Energy minimization often leads to contour evolution driven by external and internal forces.
- The approaches usually suppose that we have a good initial contour close to a state of minimal energy.

Snakes, Motivation



Source: http://www.iacl.ece.jhu.edu/static/gvf/

Snakes, Motivation



Source: [Kass et. al. 1987]

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes Basic Model

Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Active Contour Model

[Kass et. al 1987]

The deformable contour (snake) is a mapping:

$$\mathcal{C}(s): [0,1] \to \mathbb{R}^2, \quad s \mapsto \mathcal{C}(s) = (x(s), y(s))^T.$$

We define energy functional of the contour as

$$E_{snake}(\mathcal{C}) = \int_0^1 E_{int}(\mathcal{C}(s)) + E_{ext}(\mathcal{C}(s)) ds,$$

where $E_{int}(\mathcal{C}(s))$ is internal energy defined as

$$E_{int}(\mathcal{C}(s)) = \alpha(s)|\mathcal{C}'(s)|^2 + \beta(s)|\mathcal{C}''(s)|^2$$

and $E_{ext}(\mathcal{C}(s))$ is external energy defined as

$$E_{ext}(\mathcal{C}(s)) = P(\mathcal{C}(s)),$$

where *P* is the potential associated to the external forces.

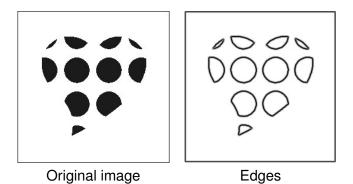
External Energy/Potential: Examples

Edges $P_{edge}(x, y) = -|\nabla f(x, y)|^2$ or better $P_{edge}(x, y) = -|\nabla (G_{\sigma}(x, y) * f(x, y))|^2$ Lines (high intensity) $P_{line}(x, y) = -f(x, y)$ or better $P_{line}(x, y) = -G_{\sigma}(x, y) * f(x, y)$ Combination P(x, y) = -P(x, y) = P(x, y) = P(x, y)

 $P(x, y) = -w_{line}P_{line} - w_{edge}P_{edge}$

- Any other task specific [Kondratiev et al., ICPR2016]
- The potential field can be static as well as dynamic.

How to define potential image?



Contour Energy Minimization

• We need to minimize $E_{snake}(C)$

$$egin{aligned} & E_{\textit{snake}}(\mathcal{C}) = \int_0^1 lpha(s) |\mathcal{C}'(s)|^2 + eta(s) |\mathcal{C}''(s)|^2 + \mathcal{P}(\mathcal{C}(s)) ds = \ & = \int_0^1 \mathcal{E}(\mathcal{C}(s), \mathcal{C}'(s), \mathcal{C}''(s)) ds, \end{aligned}$$

A local minima of the energy functional *E_{snake}(C)* satisfies necessarily the Euler-Lagrange equation

$$\frac{\partial E}{\partial \mathcal{C}} - \frac{d}{ds} \frac{\partial E}{\partial \mathcal{C}'} + \frac{d^2}{ds^2} \frac{\partial E}{\partial \mathcal{C}''} = 0.$$

Condition for Minima

• Assuming
$$\alpha(s) = \alpha$$
 and $\beta(s) = \beta$ we get:

$$\alpha \mathcal{C}'' - \beta \mathcal{C}'''' - \nabla \mathbf{P} = \mathbf{0}$$

We can perceive this equation as a force balance equation

$$F_{int} + F_{ext} = 0$$

where
$$F_{int} = \alpha C''(s) - \beta C''''(s)$$
 and $F_{ext} = -\nabla P$.

Numerical Solution of Force Balance

The equation

$$-\alpha \mathcal{C}(\boldsymbol{s})'' + \beta \mathcal{C}(\boldsymbol{s})'''' - \mathcal{F}_{ext}(\mathcal{C}(\boldsymbol{s})) = \boldsymbol{0}$$

can be discretized using finite differences in space (step h)

$$\begin{aligned} & -\frac{a}{h^2}(\mathcal{C}_{i-1} - 2\mathcal{C}_i + \mathcal{C}_{i+1}) \\ & +\frac{b}{h^4}(\mathcal{C}_{i-2} - 4\mathcal{C}_{i-1} + 6\mathcal{C}_i - 4\mathcal{C}_{i+1} + \mathcal{C}_{i+2}) \\ & -(\mathcal{F}_1(\mathcal{C}_i), \mathcal{F}_2(\mathcal{C}_i)) = 0 \end{aligned}$$
where $\mathcal{C}_i = \mathcal{C}(ih), \ a = \alpha(ih), \ b = \beta(ih).$

Matrix Form

This can be written in the matrix form

$$AX = F$$
,

where *A* is a pentadiagonal matrix and *X* and *F* consist of curve points $C_i = (x_i, y_i)$ and forces at these points $F(C_i) = (F_x(C_i), F_y(C_i))$.

$$A = \begin{pmatrix} 2a+6b & -a-4b & b & 0 & \cdots & 0 & b & -a-4b \\ -a-4b & 2a+6b & -a-4b & b & 0 & \cdots & 0 & b \\ b & -a-4b & 2a+6b & -a-4b & b & 0 & \cdots & 0 \\ 0 & b & -a-4b & 2a+6b & -a-4b & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ b & 0 & \cdots & 0 & b & -a-4b & 2a+6b & -a-4b \\ -a-4b & b & 0 & \cdots & 0 & b & -a-4b & 2a+6b & -a-4b \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ b & 0 & \cdots & 0 & b & -a-4b & 2a+6b & -a-4b \\ \vdots & \vdots & \vdots & \vdots \\ x_N & y_N \end{pmatrix}, F = \begin{pmatrix} F_x(x_1, y_1) & F_y(x_1, y_1) \\ F_x(x_2, y_2) & F_y(x_2, y_2) \\ \vdots & \vdots \\ F_x(x_N, y_N) & F_y(x_N, y_N) \end{pmatrix}.$$

Motion Equation

- The energy has many local minima of E. But we are interested in finding a good contour in a given area.
- We suppose we have a rough estimate of the curve and find the curve with (local) minimal energy by solving the associated evolution equation

$$rac{\partial \mathcal{C}}{\partial t} = \mathcal{F}_{int}(\mathcal{C}) + \mathcal{F}_{ext}(\mathcal{C})$$

with initial condition

$$\mathcal{C}(s,0) = \mathcal{C}_0(s)$$

and periodic boudary conditions.

We find a solution of the static problem when the solution C(., t) stabilizes in t. Then the term ∂C/∂t tends to 0 and we achieve a solution of the static problem.

Discrete Motion Equation

For the evolution equation

$$\frac{\partial C}{\partial t} = F_{int}(C) + F_{ext}(C),$$
$$C(s, 0) = C_0(s)$$

• We use implicit Euler method (time step τ)

$$\frac{\mathcal{C}^{t+1} - \mathcal{C}^{t}}{\tau} = F_{int}(\mathcal{C}^{t+1}) + F_{ext}(\mathcal{C}^{t+1})$$

assuming that F_{ext} is constant in one time step

$$\frac{\mathcal{C}^{t+1} - \mathcal{C}^{t}}{\tau} = F_{int}(\mathcal{C}^{t+1}) + F_{ext}(\mathcal{C}^{t})$$

Discrete Motion Equation

In matrix form:

$$\frac{X^{t+1}-X^t}{\tau} = -AX^{t+1} + F(X^t)$$

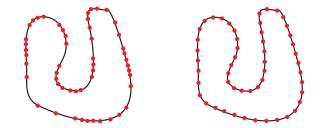
i.e.,

$$(I + \tau A)X^{t+1} = X^t + \tau F(X^t)$$

where *I* is the identity matrix.

- Thus, we obtain a linear system and we have to solve a pentadiagonal banded symmetric positive system.
- (*I* + τA)⁻¹ can be computed using a LU decomposition only once if the α, β remain constant through time.
- We stop iterating when the difference between iterations is small enough.
- Reparametrization must be performed regularly!

Reparametrization, Example



Before reparametrization After reparametrization

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model

Improvements: Normalization, Balloons, etc.

GVF Snakes Deformable Surfaces

Instability Due to Image Forces

[Cohen 1991]

- Let us examine the effect of the image force $F_{ext} = -\nabla P$. The direction of F_{ext} implies steepest descent in P, which is natural since we want to get a minimum of P. Equilibrium is achieved at points where P is a minimum in the direction normal to the curve.
- We see from (*I* + *τ*A)X^{t+1} = (X^t + *τ*F(X^t)) that the position at time *t* + 1, X^{t+1}, is obtained after moving X^t along vector *τ*F(X^t) and then solving the system.
- Therefore:

Time Discretization

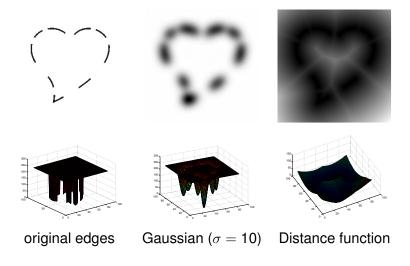
- If \(\tau F(X^t)\) is too large the point \(x^t\) can be moved too far across the desired minimum and never come back.
- This type of instability can be suppressed by manual tuning of the time step, or
- by normalizing the forces, taking F_{ext} = −k∇P/|∇P|, where τk is on the order of the pixel size. When a point of the curve is close to an edge point, it is attracted to the edge and stabilizes there if there is no conflict with the smoothing process.

Space Discretization

- The force F_{ext} is known only on a discrete grid corresponding to the image.
- We can use bilinear interpolation of F_{ext} at non-integer positions.

Accounting for Previously Detected Edges, Example

A good idea is to use some kind of smoothing:



Balloons/Pressure Forces. Motivation

- If the curve is not close enough to an edge, it is not attracted by it.
- If the curve is not submitted by any forces, it shrinks on itself.
- Often, due to noise, some isolated points are gradient maxima and can stop the curve when it passes by.

Balloons/Pressure Forces

To balance this we can add another force. We consider our curve as a "balloon" (in 2D) that we inflate. The external force F becomes

$$F = k_1 \mathbf{n}(s) - k_2 \frac{\nabla P}{|\nabla P|},$$

where $\mathbf{n}(s)$ is the normal unitary vector to the curve at point C(s) and k_1 is the amplitude of this force.

- If we change the sign of k₁ or the orientation of the curve, it will have an effect of *deflation* instead of inflation.
- k₁ and k₂ are chosen such that they are of the same order, which is smaller than a pixel size, and k₂ is slightly larger then k₁ so that an edge point can stop the inflation force.

Elasticity and Rigidity Coefficients

- The coefficients of elasticity and rigidity have great importance for the behavior of the curve along time iterations.
- If α and β are around unity, the internal energy has a major influence and the image forces have small effect. In this case the curve is only regularized.
- We obtain good results when the parameters are of the order of h² for α and h⁴ for β, where h is the space discretization step.

Snake Parameters Summary

The snake evolution equation:

$$\frac{\partial \mathcal{C}}{\partial t} = \alpha \mathcal{C}''(s) - \beta \mathcal{C}''''(s) - k_1 \mathbf{n}(s) - k_2 \frac{\nabla \mathcal{P}(\mathcal{C}(s))}{|\nabla \mathcal{P}(\mathcal{C}(s))|}$$

where

$$\mathsf{P}(\mathcal{C}(s)) = -\mathsf{w}_{\mathit{line}}(\mathsf{G}_{\sigma} * f(\mathcal{C}(s))) + \mathsf{w}_{\mathit{edge}} |
abla (\mathsf{G}_{\sigma} * f(\mathcal{C}(s)))|^2$$

In matrix form:

$$(I + \tau A)X^{t+1} = X^t + \tau F(X^t)$$

Parameter choice (better but not obligatory):

- α is of the order of h^2 and β is of the order of h^4
- k₁ sign controls inflate or deflate

►
$$|k_1| < |k_2| < 1$$

 \blacktriangleright τ controls the snake speed

Contents

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

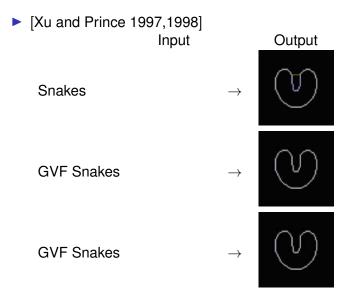
Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes

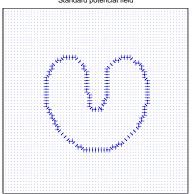
Deformable Surfaces

Summary

GVF Snakes: Motivation



Traditional External Forces



Standard potencial field

Traditional Potential Field

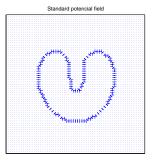
Standard potential field for the image f(x, y) looks like:

$$\mathsf{P}(x,y) = -\mathsf{w}_{\mathit{line}}(\mathit{G}_{\sigma}*\mathit{f}(x,y)) + \mathsf{w}_{\mathit{edge}}|
abla(\mathit{G}_{\sigma}*\mathit{f}(x,y))|^2$$

▶ Properties of external forces $F_{ext}(x, y) = \nabla P(x, y)$

- $\blacktriangleright \nabla P$ points toward the edges and normal to the edges.
- \(\nabla P\) generally has large magnitudes only in the immediate vicinity of the edges.
- In homogenous regions, where I(x, y) is nearly constant, ∇P is nearly zero.

Traditional External Forces



GVF Snakes

- The main idea is to compute a new static external force field F_{ext} = g(x, y), so called Gradient Vector Flow (GVF) field.
- Corresponding dynamic snake equation is

$$C_t(s,t) = -\alpha C''(s,t) + \beta C''''(s,t) - \mathbf{g}$$

It is solved numerically by discretization and iteration, in identical fashion to the traditional snake.

Gradient Vector Flow

The gradient vector flow field is the field g(x, y) = [g_x(x, y), g_y(x, y)] that minimizes the energy functional

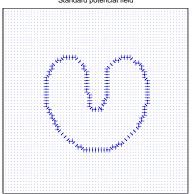
$$\varepsilon = \int \int |\nabla P|^2 |\mathbf{g} - \nabla P|^2 + \mu \left(\frac{\partial g_x}{\partial x}^2 + \frac{\partial g_x}{\partial y}^2 + \frac{\partial g_y}{\partial x}^2 + \frac{\partial g_y}{\partial y}^2 \right) dx dy$$

- The parameter μ is a regularization parameter controling the smoothness of the solution (more noise, increase μ)
- GVF field can be found by solving the following Euler equations

$$\mu \nabla^2 g_x - \left(g_x - \frac{\partial P}{\partial x}\right) \left(\frac{\partial P^2}{\partial x} + \frac{\partial P^2}{\partial y}\right) = 0$$
$$\mu \nabla^2 g_y - \left(g_y - \frac{\partial P}{\partial y}\right) \left(\frac{\partial P^2}{\partial x} + \frac{\partial P^2}{\partial y}\right) = 0$$

These equations are solved numerically.

Traditional External Forces

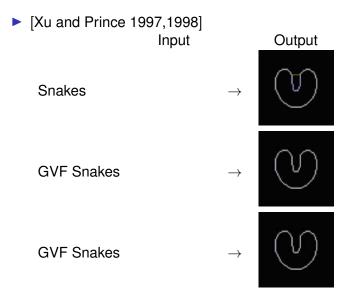


Standard potencial field

Gradient Vector Flow (Example)

GVF (mu=0.1 iterations=80)

GVF Snakes: Motivation



Contents

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Summary

Deformable Surface

- Snakes as well as GVF can be generalized to 3D space.
- However, the generalization is not straightforward nor easy.
- Implementation of snakes must be completely rewritten.
- The next two slides are only for impression.

Deformable Surface, Definition

The deformable surface model is a mapping:

$$\mathbf{v}(s,r): \Omega = [0,1] \times [0,1]
ightarrow \mathbb{R}^3$$

$$(s,r)\mapsto \mathbf{v}(s,r)=(x(s,r),y(s,r),z(s,r))$$

The energy functional is defined

$$E(\mathbf{v}) = \int_{\Omega} E_{int}(\mathbf{v}(s,r)) + E_{ext}(\mathbf{v}(s,r)) ds dr,$$

where $E_{int}(\mathbf{v}(s, r))$ is internal energy defined as

$$\begin{split} E_{int}(\mathbf{v}) &= w_{10} \left| \frac{\partial \mathbf{v}}{\partial s} \right|^2 + w_{01} \left| \frac{\partial \mathbf{v}}{\partial r} \right|^2 \\ &+ 2w_{11} \left| \frac{\partial^2 \mathbf{v}}{\partial s \partial r} \right|^2 + w_{20} \left| \frac{\partial^2 \mathbf{v}}{\partial s^2} \right|^2 + w_{02} \left| \frac{\partial^2 \mathbf{v}}{\partial r^2} \right|^2 ds \, dr, \\ \text{and } E_{ext}(\mathbf{v}(s, r)) &= P(s, r) \text{ is external (potential) energy.} \end{split}$$

Motion Equation

Euler equation (local minima condition)

$$-\frac{\partial}{\partial s}\left(w_{10}\frac{\partial \mathbf{v}}{\partial s}\right) - \frac{\partial}{\partial r}\left(w_{01}\frac{\partial \mathbf{v}}{\partial r}\right) + 2\frac{\partial^2}{\partial s\partial r}\left(w_{11}\frac{\partial^2 \mathbf{v}}{\partial s\partial r}\right)$$
$$+\frac{\partial^2}{\partial s^2}\left(w_{20}\frac{\partial^2 \mathbf{v}}{\partial s^2}\right) + \frac{\partial^2}{\partial r^2}\left(w_{02}\frac{\partial^2 \mathbf{v}}{\partial r^2}\right) + \nabla P(\mathbf{v}(s,r)) = 0$$

Associated motion equation (snake analogy)

$$\gamma \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial}{\partial s} \left(w_{10} \frac{\partial \mathbf{v}}{\partial s} \right) - \frac{\partial}{\partial r} \left(w_{01} \frac{\partial \mathbf{v}}{\partial r} \right) + 2 \frac{\partial^2}{\partial s \partial r} \left(w_{11} \frac{\partial^2 \mathbf{v}}{\partial s \partial r} \right)$$
$$+ \frac{\partial^2}{\partial s^2} \left(w_{20} \frac{\partial^2 \mathbf{v}}{\partial s^2} \right) + \frac{\partial^2}{\partial r^2} \left(w_{02} \frac{\partial^2 \mathbf{v}}{\partial r^2} \right) + \nabla P(\mathbf{v}(s, r)) = 0,$$

Numerical Solution

- Numerical solution using finite-difference method is time consuming.
- Different method, e.g. finite element method (FEM), needs to be applied.
- GVF field has to be computed in 3D in advance.

Contents

Segmentation

What Is Segmentation? Classical Methods Machine learning Energy-Based Approaches

Active Contour Model, Snakes

Basic Model Improvements: Normalization, Balloons, etc. GVF Snakes Deformable Surfaces

Summary

Summary

- Snake is parametric curve, which changes its shape under the influence of internal and external forces (minimizes own energy)
- Initial model must be close to the expected result
 - Remedy: balloon force, gradient vector flow
- External forces must be appropriately defined to detect objects
- Relatively fast computation
- Preserves topology of contour, but the contour may cross
- Topology changes are problematic
- Can be generalized to 3D (however, generalization is not straightforward)
- Snake can be represented by B-splines (B-snakes).

References

- M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, Int. J Computer Vision, vol. 1. no. 4., 1988.
- L. D. Cohen, On Active Contour Models and Balloons, Computer Vision, Graphics, and Image Processing: Image Understanding, vol. 53, no. 2, 1991
- L. D. Cohen, and I. Cohen, Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images, IEEE T. PAMI, Vol. 15, No. 11, 1993
- C. Xu and J. L. Prince, Gradient Vector Flow: A new External Force for Snakes, CVPR'97
- C. Xu and J. L. Prince, Snakes, Shapes, and Gradient Vector Flow, IEEE TIP, Vol. 7, No. 3, 1998
- http://iacl.ece.jhu.edu/projects/gvf/