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Course outline

> Active Contours (Snakes)

» Level Set Methods: Introduction and Fast Marching
Algorithm

> Level Set Methods: Numerical Schemes

» Segmentation using Level Set Methods: Region Based
Active Contours
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What is segmentation?

» Partition of the image domain into connected regions
X‘| PREEY) Xn.

> In the ideal case, every region X; represents an object in
the real world.

» One of the most difficult areas in image analysis:
illumination differences, occlusions, lack of a priori
knowledge

» No general method exists.
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How to segment this image?
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How to segment this image?
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How to segment this image?
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How to segment this image?




Frequent Assumptions

>

>

Region Based Segmentation: Pixels that belong to the
same segment have similar grey values.

Edge Based Segmentation: There is a jump in the grey
values between two adjacent regions. Example: Zero
crossings of the Laplacian yield an edge based
segmentation with closed contours as segment
boundaries.

Texture Segmentation: Segmenting textures requires a
preprocessing step: computation of a suitable texture
descriptor. The goal is to achieve almost homogeneous
descriptor values within each segment.

Machine learning: Segmentation principle is derived
directly from images during training stage. Training dataset
is required. Segmentation quality depends a lot on the
training dataset quality.
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Classical methods
» Thresholding
» Simplest method
» No spatial context, choice of threshold

» Color-based Segmentation (e.g. K-means)
» Uses color information
> No spatial context again
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Classical methods

» Watershed algorithm

» Need to compute gradient magnitude
» Number of objects corresponds to the number of minima.
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» Texture methods

» Right choice of texture descriptors (homogeneous
descriptor values within each segment)
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Machine learning

» Classic machine learning

» SVM, Boosting, Random Forests etc.
» Since 2012 - mostly Convolutional Neural Networks aka

Deep Learning
» Example
» U-net
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Energy-based Approaches

» |dea

» Contour (i.e, curve or surface) with minimal energy is
usually searched.
> Energy is typically composed of two terms:

Internal energy - includes shape constraints
External energy - includes image data constraints

» Energy minimization often leads to contour evolution driven
by external and internal forces.

» The approaches usually suppose that we have a good
initial contour close to a state of minimal energy.
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Snakes, Motivation

Dots

3D object

Source: http://www.iacl.ece.jhu.edu/static/gvE/
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http://www.iacl.ece.jhu.edu/static/gvf/

Snakes, Motivation

I

Source: [Kass et. al. 1987]
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Active Contour Model
> [Kass et. al 1987]
» The deformable contour (snake) is a mapping:

C(s):[0,1] = R2, s+ C(s) = (x(s),y(s))".

» We define energy functional of the contour as

Esnake(C / Eint(C(s)) + Eext(C(S))ds,

where Ej(C(s)) is internal energy defined as

Eint(C(8)) = a(s)[C'(s)|? + B(s)IC"(s)I?

and Ex(C(s)) is external energy defined as

Eext(C(s)) = P(C(s)),

where P is the potential associated to the external forces.
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External Energy/Potential: Examples

» Edges

Pedge(xay) = _|Vf(XaY)|2
or better

Peage(X, ¥) = —|V(Go (X, y) * f(x, y))|?
» Lines (high intensity)

Pline(Xa}/) = _f(XJ/)
or better

Pine(x,y) = —Gs(x,y) x f(x,y)
» Combination

P(x,y) = —Wiine Pline — Wedge Pedge
» Any other task specific [Kondratiev et al., ICPR2016]
» The potential field can be static as well as dynamic.
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How to define potential image?
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Contour Energy Minimization

» We need to minimize Egpake(C)

1
Esnake(C) = /0 o8)IC'(s)[ + B(s)IC" () + P(C(s))ds =

= /1 E(C(s),C'(s),C"(s))ds,
0

» A local minima of the energy functional Egpake(C) satisfies
necessarily the Euler-Lagrange equation

OE _ d OE o OE _
oC dsoc’  ds2oc’
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Condition for Minima

» Assuming a(s) = «a and 5(s) = 5 we get:
aC” — BC" — VP =0
» We can perceive this equation as a force balance equation
Fint + Fext =0

where Fipy = aC”(s) — C""(s) and Fext = —VP.
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Numerical Solution of Force Balance

» The equation
—aC(s)" + BC(8)"" — Fext(C(s)) =0

can be discretized using finite differences in space (step h)
a
—+2(Ci1 = 2Ci + Cia)
b
+—(Ci_o —4Ci_1 +6C; —4Cj 1 + Cii2)

A
—(F1(Ci), F2(Ci)) = 0
where C; = C(ih), a = «a(ih), b = B(ih).

28/60



Matrix Form

» This can be written in the matrix form

AX = F,

where A is a pentadiagonal matrix and X and F consist of
curve points C; = (X;, y;) and forces at these points
F(Ci) = (Fx(Ci), Fy(C))).

2a+ 6b
—a—4b
b
0
A=
b
—a—4b
| n
X2 Y2
X = .
XN YN

—a—4b b
2a+6b —a—4b
—a—4b 2a+ 6b
b —a—4b

0
b 0
Fx(x1, 1)
Fx(x2, y2)
,F = .
Fx(Xn> Yn)

0 0
b 0
—a—4b b 0
2a+6b —a—4b
0 b —a-—4b
Fy(x1,y1)
Fy(x2, y2)
Fy(xn> YN)

=N

2a+6b
—a—4b

—a—4b
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Motion Equation

>

>

The energy has many local minima of E. But we are
interested in finding a good contour in a given area.

We suppose we have a rough estimate of the curve and
find the curve with (local) minimal energy by solving the
associated evolution equation

ocC
E = Fint(c) + Fext(c)

with initial condition
C(s,0) = Co(s)

and periodic boudary conditions.

We find a solution of the static problem when the solution
C(., t) stabilizes in t. Then the term 25 tends to 0 and we
achieve a solution of the static problem.
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Discrete Motion Equation

» For the evolution equation

O = FinlC) + For(©),

C(s,0) = Co(s)

» We use implicit Euler method (time step 1)
Ct+1 _ Ct

T

= Fint(C™7) + Fext(C™T)
assuming that Fey; is constant in one time step

Ct+1 _ Ct
- = Fint(ct+1) + Fext(ct)

T
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Discrete Motion Equation

» In matrix form:

Xt+1 _ Xt
7

= —AX" 4+ F(Xx")

i.e.,
(I+7A)XT = X'+ rF(X")
where [ is the identity matrix.

» Thus, we obtain a linear system and we have to solve a
pentadiagonal banded symmetric positive system.

» (I +7A)~" can be computed using a LU decomposition
only once if the «, 8 remain constant through time.

» We stop iterating when the difference between iterations is
small enough.

» Reparametrization must be performed regularly!
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Reparametrization, Example

Before reparametrization  After reparametrization
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Instability Due to Image Forces

>
| 4

[Cohen 1991]

Let us examine the effect of the image force Fexy = —VP.
The direction of Fgy; implies steepest descent in P, which
is natural since we want to get a minimum of P. Equilibrium
is achieved at points where P is a minimum in the direction
normal to the curve.

We see from (/4 7A) X! = (X + 7F (X)) that the
position at time t + 1, X1, is obtained after moving X!
along vector 7F(X?!) and then solving the system.

Therefore:
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Time Discretization

| 2

>

>

If 7F(X?) is too large the point x! can be moved too far
across the desired minimum and never come back.

This type of instability can be suppressed by manual tuning
of the time step, or

by normalizing the forces, taking Fext = —kVP/|VP|,
where 7k is on the order of the pixel size. When a point of
the curve is close to an edge point, it is attracted to the
edge and stabilizes there if there is no conflict with the
smoothing process.
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Space Discretization

» The force Fey; is known only on a discrete grid
corresponding to the image.

» We can use bilinear interpolation of Fgy at non-integer
positions.
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Accounting for Previously Detected Edges, Example

A good idea is to use some kind of smoothing:

PRaNEN s
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original edges Gaussian (o0 = 10) Distance function
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Balloons/Pressure Forces. Motivation

> If the curve is not close enough to an edge, it is not
attracted by it.

> |f the curve is not submitted by any forces, it shrinks on
itself.

» Often, due to noise, some isolated points are gradient
maxima and can stop the curve when it passes by.
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Balloons/Pressure Forces

» To balance this we can add another force. We consider our
curve as a “balloon” (in 2D) that we inflate. The external
force F becomes

vP

F = kin(s) — k2W7

where n(s) is the normal unitary vector to the curve at
point C(s) and ky is the amplitude of this force.

» If we change the sign of k; or the orientation of the curve, it
will have an effect of deflation instead of inflation.

» ki and ko are chosen such that they are of the same order,
which is smaller than a pixel size, and k» is slightly larger
then ky so that an edge point can stop the inflation force.
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Elasticity and Rigidity Coefficients

» The coefficients of elasticity and rigidity have great
importance for the behavior of the curve along time
iterations.

> If « and g are around unity, the internal energy has a major
influence and the image forces have small effect. In this
case the curve is only regularized.

» We obtain good results when the parameters are of the
order of h? for o and h* for /3, where h is the space
discretization step.
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Snake Parameters Summary

» The snake evolution equation:

8C " "1 VP(C(S))
Bt = aC"(9) = BC"(8) — kan(S) ~ ke g g
where

P(C(5)) = —Wine(Go * F(C(8))) + Wedge| V(G- * f(C(8)))[?
» In matrix form:
(I+7AXT = X!+ rF(X")

» Parameter choice (better but not obligatory):

> «is of the order of h? and § is of the order of h*
» ki sign controls inflate or deflate

> k| < k2| <1

» 7 controls the snake speed
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GVF Snakes: Motivation

» [Xu and Prince 1997,1998|
Input

Snakes

GVF Snakes

GVF Snakes
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Traditional External Forces

Standard potencial field
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Traditional Potential Field

» Standard potential field for the image f(x, y) looks like:

P(X,y) = —Wine(Gy * F(X, ¥)) + Wedge| V(Go * F(x, ¥))?

» Properties of external forces Fext(X,y) = VP(X,y)
» VP points toward the edges and normal to the edges.
» VP generally has large magnitudes only in the immediate
vicinity of the edges.
> In homogenous regions, where I(x, y) is nearly constant,
VP is nearly zero.
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Traditional External Forces

Standard potencial field
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GVF Snakes

» The main idea is to compute a new static external force
field Fext = 9(X, ¥), so called Gradient Vector Flow (GVF)
field.

» Corresponding dynamic snake equation is
Ci(s,t) = —al"(s,t) + BC""(s,t) — @

» It is solved numerically by discretization and iteration, in
identical fashion to the traditional snake.
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Gradient Vector Flow
» The gradient vector flow field is the field

a(x,y) = [gx(x,y), gy(x, y)] that minimizes the energy
functional

2 2
s_//yvpy g- VP2t <8gx 1095 09,° D9y )dxdy

oy ox oy

» The parameter  is a regularization parameter controling
the smoothness of the solution (more noise, increase )

» GVF field can be found by solving the following Euler
equations

oP\ (oP?  oP?
24, _ - - — | =
1Vegx (gx 8x) <8x + dy ) 0

oP\ [ 0P?%2 oP?
2 A N AL A
Nv g,V <gy ay> <ax + ay > 0

» These equations are solved numerically.
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Traditional External Forces

Standard potencial field
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Gradient Vector Flow (Example)
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GVF Snakes: Motivation

» [Xu and Prince 1997,1998|
Input

Snakes

GVF Snakes

GVF Snakes
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Deformable Surface

» Snakes as well as GVF can be generalized to 3D space.

» However, the generalization is not straightforward nor easy.
» Implementation of snakes must be completely rewritten.

» The next two slides are only for impression.
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Deformable Surface, Definition
» The deformable surface model is a mapping:

v(s,r): Q=10,1] x [0,1] = R3
(s,r) = v(s,r) = (x(s,r), ¥(s,r), 2(s,r))
» The energy functional is defined

E(v) = /Q En(¥(5,7)) + Eaxi(v(s, r))dsdr,

where Ej;(v(s, r)) is internal energy defined as

2 2

ov
Eii(v) = — —
int(V) = Wi Js + Wo1 ar
o 2 62v2 o 2
2w Woo | —5 Wy |—= | dsar
TeW osor + Weo 082 + Wo2 or? ’

and Eex(Vv(s,r)) = P(s,r) is external (potential) energy.
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Motion Equation

» Euler equation (local minima condition)
9 " ov G, ov P 0? " 0?v
9s %9s ) or W15, or asor " osor

62 o?v 92 %v
832 <W20882> 52 <W02a 2) + VP(v(s,r))=0

» Associated motion equation (snake analogy)
ov 0 w ovy 9 ov e 02 » 0%v
Yot~ as \"%8s) " ar \"ar ) " “asar \ """ asar

P v\ R (o
T os? (Wzoas2> ar2 (Woza )*VP( (s.1) =0,
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Numerical Solution

» Numerical solution using finite-difference method is time
consuming.

» Different method, e.g. finite element method (FEM), needs
to be applied.

» GVF field has to be computed in 3D in advance.
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Summary

| 2

vvyyypy v

v

Snake is parametric curve, which changes its shape under
the influence of internal and external forces (minimizes
own energy)

Initial model must be close to the expected result
» Remedy: balloon force, gradient vector flow

External forces must be appropriately defined to detect
objects

Relatively fast computation
Preserves topology of contour, but the contour may cross
Topology changes are problematic

Can be generalized to 3D (however, generalization is not
straightforward)

Snake can be represented by B-splines (B-snakes).
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