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Course outline

I Active Contours (Snakes)
I Level Set Methods: Introduction and Fast Marching

Algorithm
I Level Set Methods: Numerical Schemes
I Segmentation using Level Set Methods: Region Based

Active Contours
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What is segmentation?

I Partition of the image domain into connected regions
X1, ...,Xn.

I In the ideal case, every region Xi represents an object in
the real world.

I One of the most difficult areas in image analysis:
illumination differences, occlusions, lack of a priori
knowledge

I No general method exists.
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How to segment this image?
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How to segment this image?
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How to segment this image?
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How to segment this image?
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Frequent Assumptions

I Region Based Segmentation: Pixels that belong to the
same segment have similar grey values.

I Edge Based Segmentation: There is a jump in the grey
values between two adjacent regions. Example: Zero
crossings of the Laplacian yield an edge based
segmentation with closed contours as segment
boundaries.

I Texture Segmentation: Segmenting textures requires a
preprocessing step: computation of a suitable texture
descriptor. The goal is to achieve almost homogeneous
descriptor values within each segment.

I Machine learning: Segmentation principle is derived
directly from images during training stage. Training dataset
is required. Segmentation quality depends a lot on the
training dataset quality.
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Classical methods
I Thresholding

I Simplest method
I No spatial context, choice of threshold

I Color-based Segmentation (e.g. K-means)
I Uses color information
I No spatial context again
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Classical methods

I Watershed algorithm
I Need to compute gradient magnitude
I Number of objects corresponds to the number of minima.

I Texture methods
I Right choice of texture descriptors (homogeneous

descriptor values within each segment)
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Machine learning

I Classic machine learning
I SVM, Boosting, Random Forests etc.
I Since 2012 - mostly Convolutional Neural Networks aka

Deep Learning
I Example

I U-net

→
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Energy-based Approaches

I Idea
I Contour (i.e, curve or surface) with minimal energy is

usually searched.
I Energy is typically composed of two terms:

Internal energy - includes shape constraints
External energy - includes image data constraints

I Energy minimization often leads to contour evolution driven
by external and internal forces.

I The approaches usually suppose that we have a good
initial contour close to a state of minimal energy.
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Snakes, Motivation

Input Output

Dots →

Heart →

3D object →

Source: http://www.iacl.ece.jhu.edu/static/gvf/
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Snakes, Motivation

Source: [Kass et. al. 1987]
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Active Contour Model
I [Kass et. al 1987]

I The deformable contour (snake) is a mapping:

C(s) : [0,1]→ R2, s 7→ C(s) = (x(s), y(s))T .

I We define energy functional of the contour as

Esnake(C) =

∫ 1

0
Eint (C(s)) + Eext (C(s))ds,

where Eint (C(s)) is internal energy defined as

Eint (C(s)) = α(s)|C′(s)|2 + β(s)|C′′(s)|2

and Eext (C(s)) is external energy defined as

Eext (C(s)) = P(C(s)),

where P is the potential associated to the external forces.
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External Energy/Potential: Examples

I Edges
Pedge(x , y) = −|∇f (x , y)|2
or better
Pedge(x , y) = −|∇(Gσ(x , y) ∗ f (x , y))|2

I Lines (high intensity)
Pline(x , y) = −f (x , y)
or better
Pline(x , y) = −Gσ(x , y) ∗ f (x , y)

I Combination
P(x , y) = −wlinePline − wedgePedge

I Any other task specific [Kondratiev et al., ICPR2016]
I The potential field can be static as well as dynamic.
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How to define potential image?

Original image Edges
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Contour Energy Minimization

I We need to minimize Esnake(C)

Esnake(C) =

∫ 1

0
α(s)|C′(s)|2 + β(s)|C′′(s)|2 + P(C(s))ds =

=

∫ 1

0
E(C(s), C′(s), C′′(s))ds,

I A local minima of the energy functional Esnake(C) satisfies
necessarily the Euler-Lagrange equation

∂E
∂C
− d

ds
∂E
∂C′

+
d2

ds2
∂E
∂C′′

= 0.
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Condition for Minima

I Assuming α(s) = α and β(s) = β we get:

αC′′ − βC′′′′ −∇P = 0

I We can perceive this equation as a force balance equation

Fint + Fext = 0

where Fint = αC′′(s)− βC′′′′(s) and Fext = −∇P.
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Numerical Solution of Force Balance

I The equation

−αC(s)′′ + βC(s)′′′′ − Fext (C(s)) = 0

can be discretized using finite differences in space (step h)

− a
h2 (Ci−1 − 2Ci + Ci+1)

+
b
h4 (Ci−2 − 4Ci−1 + 6Ci − 4Ci+1 + Ci+2)

−(F1(Ci),F2(Ci)) = 0

where Ci = C(ih), a = α(ih), b = β(ih).
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Matrix Form

I This can be written in the matrix form

AX = F ,

where A is a pentadiagonal matrix and X and F consist of
curve points Ci = (xi , yi) and forces at these points
F (Ci) = (Fx (Ci),Fy (Ci)).

A =



2a + 6b −a − 4b b 0 · · · 0 b −a − 4b
−a − 4b 2a + 6b −a − 4b b 0 · · · 0 b

b −a − 4b 2a + 6b −a − 4b b 0 · · · 0
0 b −a − 4b 2a + 6b −a − 4b
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.
b 0 · · · 0 b −a − 4b 2a + 6b −a − 4b

−a − 4b b 0 · · · 0 b −a − 4b 2a + 6b



X =


x1 y1
x2 y2

.

.

.
.
.
.

xN yN

, F =


Fx (x1, y1) Fy (x1, y1)
Fx (x2, y2) Fy (x2, y2)

.

.

.
.
.
.

Fx (xN , yN ) Fy (xN , yN )

.
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Motion Equation
I The energy has many local minima of E . But we are

interested in finding a good contour in a given area.
I We suppose we have a rough estimate of the curve and

find the curve with (local) minimal energy by solving the
associated evolution equation

∂C
∂t

= Fint (C) + Fext (C)

with initial condition

C(s,0) = C0(s)

and periodic boudary conditions.
I We find a solution of the static problem when the solution
C(., t) stabilizes in t . Then the term ∂C

∂t tends to 0 and we
achieve a solution of the static problem.
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Discrete Motion Equation

I For the evolution equation

∂C
∂t

= Fint (C) + Fext (C) ,

C(s,0) = C0(s)

I We use implicit Euler method (time step τ )

Ct+1 − Ct

τ
= Fint (Ct+1) + Fext (Ct+1)

assuming that Fext is constant in one time step

Ct+1 − Ct

τ
= Fint (Ct+1) + Fext (Ct )
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Discrete Motion Equation

I In matrix form:

X t+1 − X t

τ
= −AX t+1 + F (X t )

i.e.,
(I + τA)X t+1 = X t + τF (X t )

where I is the identity matrix.
I Thus, we obtain a linear system and we have to solve a

pentadiagonal banded symmetric positive system.
I (I + τA)−1 can be computed using a LU decomposition

only once if the α, β remain constant through time.
I We stop iterating when the difference between iterations is

small enough.
I Reparametrization must be performed regularly!
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Reparametrization, Example

Before reparametrization After reparametrization
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Instability Due to Image Forces

I [Cohen 1991]

I Let us examine the effect of the image force Fext = −∇P.
The direction of Fext implies steepest descent in P, which
is natural since we want to get a minimum of P. Equilibrium
is achieved at points where P is a minimum in the direction
normal to the curve.

I We see from (I + τA)X t+1 = (X t + τF (X t )) that the
position at time t + 1, X t+1, is obtained after moving X t

along vector τF (X t ) and then solving the system.
I Therefore:
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Time Discretization

I If τF (X t ) is too large the point x t can be moved too far
across the desired minimum and never come back.

I This type of instability can be suppressed by manual tuning
of the time step, or

I by normalizing the forces, taking Fext = −k∇P/|∇P|,
where τk is on the order of the pixel size. When a point of
the curve is close to an edge point, it is attracted to the
edge and stabilizes there if there is no conflict with the
smoothing process.
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Space Discretization

I The force Fext is known only on a discrete grid
corresponding to the image.

I We can use bilinear interpolation of Fext at non-integer
positions.
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Accounting for Previously Detected Edges, Example

A good idea is to use some kind of smoothing:
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Balloons/Pressure Forces. Motivation

I If the curve is not close enough to an edge, it is not
attracted by it.

I If the curve is not submitted by any forces, it shrinks on
itself.

I Often, due to noise, some isolated points are gradient
maxima and can stop the curve when it passes by.
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Balloons/Pressure Forces

I To balance this we can add another force. We consider our
curve as a “balloon” (in 2D) that we inflate. The external
force F becomes

F = k1n(s)− k2
∇P
|∇P|

,

where n(s) is the normal unitary vector to the curve at
point C(s) and k1 is the amplitude of this force.

I If we change the sign of k1 or the orientation of the curve, it
will have an effect of deflation instead of inflation.

I k1 and k2 are chosen such that they are of the same order,
which is smaller than a pixel size, and k2 is slightly larger
then k1 so that an edge point can stop the inflation force.
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Elasticity and Rigidity Coefficients

I The coefficients of elasticity and rigidity have great
importance for the behavior of the curve along time
iterations.

I If α and β are around unity, the internal energy has a major
influence and the image forces have small effect. In this
case the curve is only regularized.

I We obtain good results when the parameters are of the
order of h2 for α and h4 for β, where h is the space
discretization step.
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Snake Parameters Summary
I The snake evolution equation:

∂C
∂t

= αC′′(s)− βC′′′′(s)− k1n(s)− k2
∇P(C(s))

|∇P(C(s))|

where

P(C(s)) = −wline(Gσ ∗ f (C(s))) + wedge|∇(Gσ ∗ f (C(s)))|2

I In matrix form:

(I + τA)X t+1 = X t + τF (X t )

I Parameter choice (better but not obligatory):
I α is of the order of h2 and β is of the order of h4

I k1 sign controls inflate or deflate
I |k1| < |k2| < 1
I τ controls the snake speed

42/60



Contents

Segmentation
What Is Segmentation?
Classical Methods
Machine learning
Energy-Based Approaches

Active Contour Model, Snakes
Basic Model
Improvements: Normalization, Balloons, etc.
GVF Snakes
Deformable Surfaces

Summary

43/60



GVF Snakes: Motivation

I [Xu and Prince 1997,1998]
Input Output

Snakes →

GVF Snakes →

GVF Snakes →
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Traditional External Forces

Standard potencial field
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Traditional Potential Field

I Standard potential field for the image f (x , y) looks like:

P(x , y) = −wline(Gσ ∗ f (x , y)) + wedge|∇(Gσ ∗ f (x , y))|2

I Properties of external forces Fext (x , y) = ∇P(x , y)
I ∇P points toward the edges and normal to the edges.
I ∇P generally has large magnitudes only in the immediate

vicinity of the edges.
I In homogenous regions, where I(x , y) is nearly constant,
∇P is nearly zero.
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Traditional External Forces

Standard potencial field
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GVF Snakes

I The main idea is to compute a new static external force
field Fext = g(x , y), so called Gradient Vector Flow (GVF)
field.

I Corresponding dynamic snake equation is

Ct (s, t) = −αC′′(s, t) + βC′′′′(s, t)− g

I It is solved numerically by discretization and iteration, in
identical fashion to the traditional snake.
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Gradient Vector Flow
I The gradient vector flow field is the field

g(x , y) = [gx (x , y),gy (x , y)] that minimizes the energy
functional

ε =

∫ ∫
|∇P|2|g−∇P|2+µ

(
∂gx

∂x

2
+
∂gx

∂y

2
+
∂gy

∂x

2
+
∂gy

∂y

2
)

dxdy

I The parameter µ is a regularization parameter controling
the smoothness of the solution (more noise, increase µ)

I GVF field can be found by solving the following Euler
equations

µ∇2gx −
(

gx −
∂P
∂x

)(
∂P
∂x

2
+
∂P
∂y

2
)

= 0

µ∇2gy −
(

gy −
∂P
∂y

)(
∂P
∂x

2
+
∂P
∂y

2
)

= 0

I These equations are solved numerically.
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Traditional External Forces

Standard potencial field
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Gradient Vector Flow (Example)

GVF   (mu=0.1  iterations=80)
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GVF Snakes: Motivation

I [Xu and Prince 1997,1998]
Input Output

Snakes →

GVF Snakes →

GVF Snakes →
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Deformable Surface

I Snakes as well as GVF can be generalized to 3D space.
I However, the generalization is not straightforward nor easy.
I Implementation of snakes must be completely rewritten.
I The next two slides are only for impression.
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Deformable Surface, Definition
I The deformable surface model is a mapping:

v(s, r) : Ω = [0,1]× [0,1]→ R3

(s, r) 7→ v(s, r) = (x(s, r), y(s, r), z(s, r))

I The energy functional is defined

E(v) =

∫
Ω

Eint (v(s, r)) + Eext (v(s, r))dsdr ,

where Eint (v(s, r)) is internal energy defined as

Eint (v) = w10

∣∣∣∣∂v
∂s

∣∣∣∣2 + w01

∣∣∣∣∂v
∂r

∣∣∣∣2

+2w11

∣∣∣∣ ∂2v
∂s∂r

∣∣∣∣2 + w20

∣∣∣∣∂2v
∂s2

∣∣∣∣2 + w02

∣∣∣∣∂2v
∂r2

∣∣∣∣2 ds dr ,

and Eext (v(s, r)) = P(s, r) is external (potential) energy.
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Motion Equation

I Euler equation (local minima condition)

− ∂

∂s

(
w10

∂v
∂s

)
− ∂

∂r

(
w01

∂v
∂r

)
+ 2

∂2

∂s∂r

(
w11

∂2v
∂s∂r

)

+
∂2

∂s2

(
w20

∂2v
∂s2

)
+

∂2

∂r2

(
w02

∂2v
∂r2

)
+∇P(v(s, r)) = 0

I Associated motion equation (snake analogy)

γ
∂v
∂t
− ∂

∂s

(
w10

∂v
∂s

)
− ∂

∂r

(
w01

∂v
∂r

)
+ 2

∂2

∂s∂r

(
w11

∂2v
∂s∂r

)

+
∂2

∂s2

(
w20

∂2v
∂s2

)
+

∂2

∂r2

(
w02

∂2v
∂r2

)
+∇P(v(s, r)) = 0,
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Numerical Solution

I Numerical solution using finite-difference method is time
consuming.

I Different method, e.g. finite element method (FEM), needs
to be applied.

I GVF field has to be computed in 3D in advance.
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Summary

I Snake is parametric curve, which changes its shape under
the influence of internal and external forces (minimizes
own energy)

I Initial model must be close to the expected result
I Remedy: balloon force, gradient vector flow

I External forces must be appropriately defined to detect
objects

I Relatively fast computation
I Preserves topology of contour, but the contour may cross
I Topology changes are problematic
I Can be generalized to 3D (however, generalization is not

straightforward)
I Snake can be represented by B-splines (B-snakes).

59/60



References

I M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active
Contour Models, Int. J Computer Vision, vol. 1. no. 4.,
1988.

I L. D. Cohen, On Active Contour Models and Balloons,
Computer Vision, Graphics, and Image Processing: Image
Understanding, vol. 53, no. 2, 1991

I L. D. Cohen, and I. Cohen, Finite-Element Methods for
Active Contour Models and Balloons for 2-D and 3-D
Images, IEEE T. PAMI, Vol. 15, No. 11, 1993

I C. Xu and J. L. Prince, Gradient Vector Flow: A new
External Force for Snakes, CVPR’97

I C. Xu and J. L. Prince, Snakes, Shapes, and Gradient
Vector Flow, IEEE TIP, Vol. 7, No. 3, 1998

I http://iacl.ece.jhu.edu/projects/gvf/

60/60

http://iacl.ece.jhu.edu/projects/gvf/

	Segmentation
	What Is Segmentation?
	Classical Methods
	Machine learning
	Energy-Based Approaches

	Active Contour Model, Snakes
	Basic Model
	Improvements: Normalization, Balloons, etc.
	GVF Snakes
	Deformable Surfaces

	Summary

	anm8: 
	8.30: 
	8.29: 
	8.28: 
	8.27: 
	8.26: 
	8.25: 
	8.24: 
	8.23: 
	8.22: 
	8.21: 
	8.20: 
	8.19: 
	8.18: 
	8.17: 
	8.16: 
	8.15: 
	8.14: 
	8.13: 
	8.12: 
	8.11: 
	8.10: 
	8.9: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.30: 
	7.29: 
	7.28: 
	7.27: 
	7.26: 
	7.25: 
	7.24: 
	7.23: 
	7.22: 
	7.21: 
	7.20: 
	7.19: 
	7.18: 
	7.17: 
	7.16: 
	7.15: 
	7.14: 
	7.13: 
	7.12: 
	7.11: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.30: 
	6.29: 
	6.28: 
	6.27: 
	6.26: 
	6.25: 
	6.24: 
	6.23: 
	6.22: 
	6.21: 
	6.20: 
	6.19: 
	6.18: 
	6.17: 
	6.16: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.30: 
	5.29: 
	5.28: 
	5.27: 
	5.26: 
	5.25: 
	5.24: 
	5.23: 
	5.22: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.30: 
	4.29: 
	4.28: 
	4.27: 
	4.26: 
	4.25: 
	4.24: 
	4.23: 
	4.22: 
	4.21: 
	4.20: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


