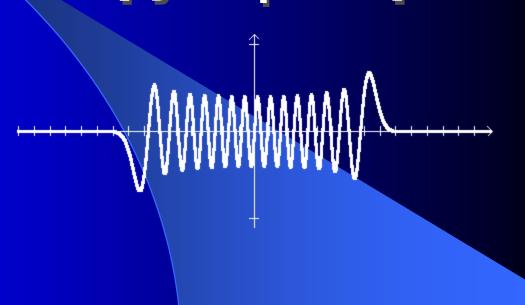
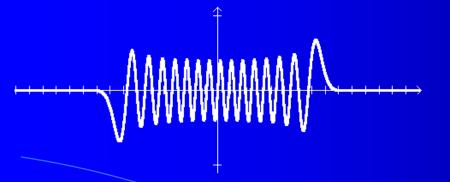
Лекция 7

Проекционный метод обращения преобразования фурье с использованием функций Эрмита

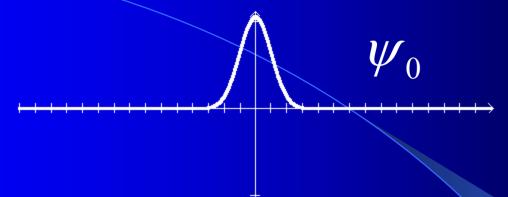




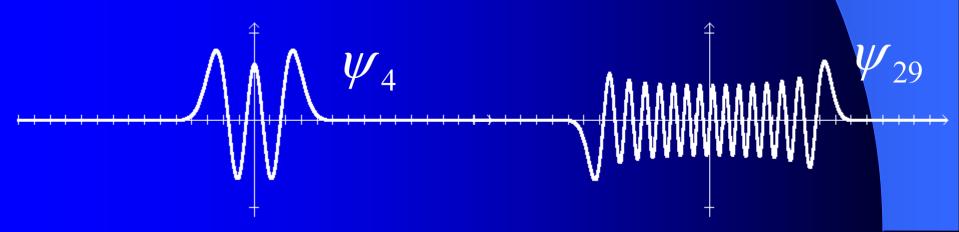
Проекционный метод обращения преобразования фурье с использованием функций Эрмита

Outline:

- Projection Method (Hermite series approach)
- Applications
 - 1. Image filtering and deblocking by projection filtering
 - 2. Image matching
 - 3. Texture matching
 - 4. Low-level methods for audio
 - 5. Hermite foveation



The proposed methods is based on the features of Hermite functions. An expansion of signal information into a series of these functions enables one to perform information analysis of the signal and its Fourier transform at the same time.



$$A) \qquad \psi_n = i^n \psi_n$$

B) They derivate a full orthonormal in $L_2(-\infty,\infty)$ system of functions.

The Hermite functions are defined as:

$$\psi_n(x) = \frac{(-1)^n e^{x^2/2}}{\sqrt{2^n n! \sqrt{\pi}}} \cdot \frac{d^n(e^{-x^2})}{dx^n}$$

2D decoded image by
45 Hermite functions at
the first pass and 30
Hermite functions at
the second pass

Difference image (+50% intensity)

2D decoded image by 90 Hermite functions at the first pass and 60 Hermite functions at the second pass

Original image

Difference image (+50% intensity)

Image filtering and deblocking by projection filtering

Original lossy JPEG image

Enhanced image

Difference image (Subtracted high frequency information)

Zoomed in:

Original image

Enhanced image

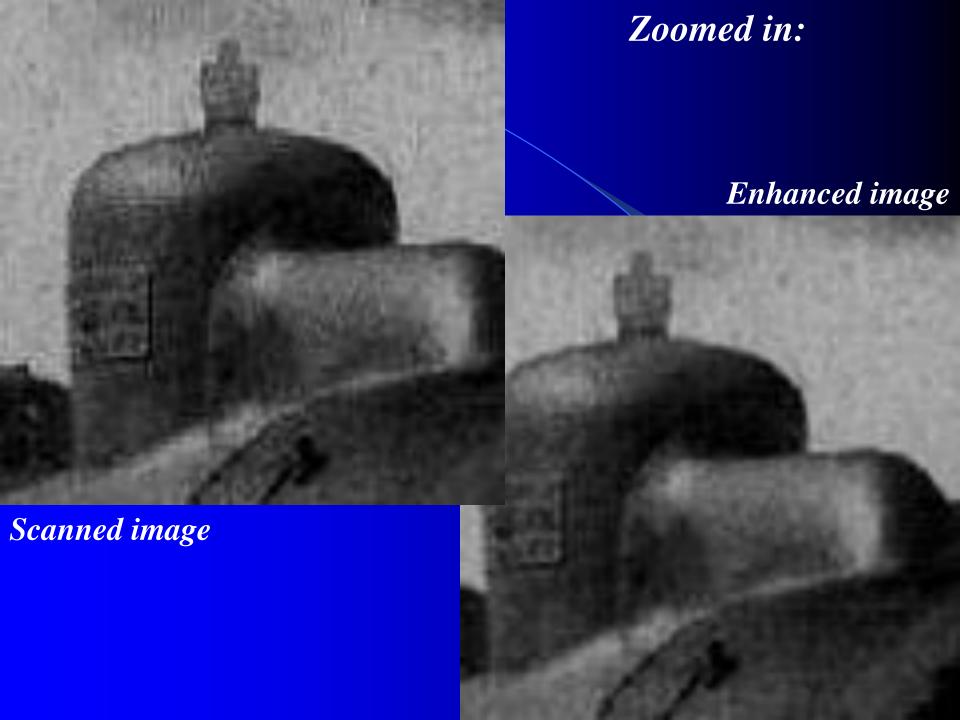


Image matching

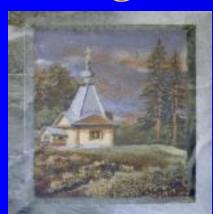
Information parameterization for image database retrieval

Image normalizing

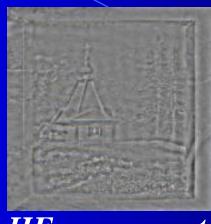
Graphical information parameterization

Parameterized image retrieval

Information parameterization for image database retrieval



Normalized image



HF component

LF component

Recovered image with the recovered image plane

Image normalizing

Graphical information parameterization

Parameterized image retrieval

Information parameterization for image database retrieval

Database size

Initial images format

Normalized images format

Number of parameterization coefficients

Error rate

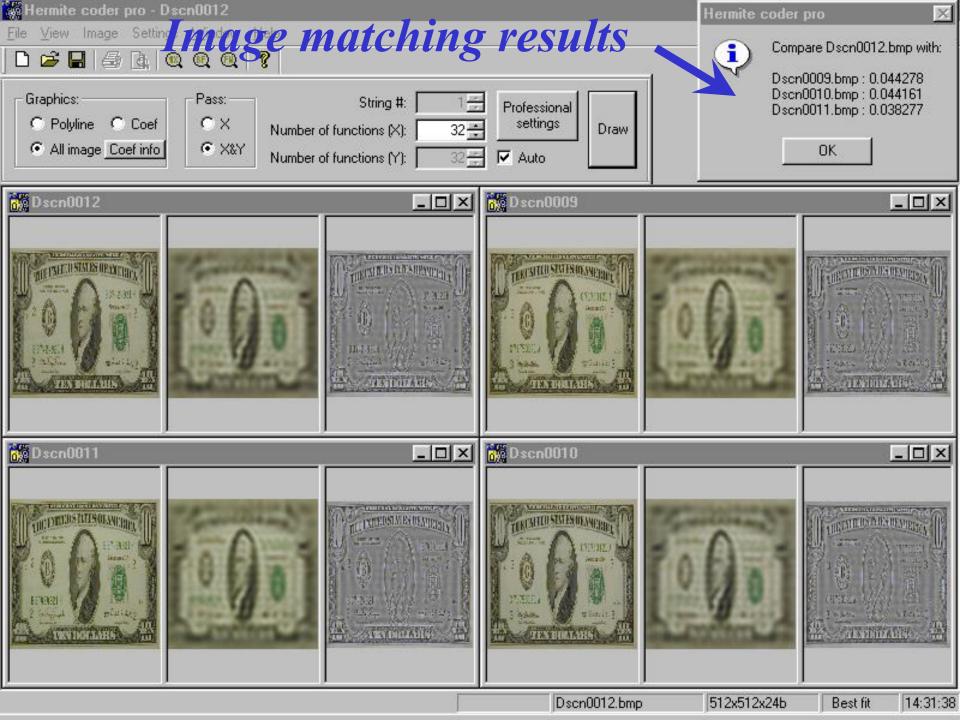
Search time

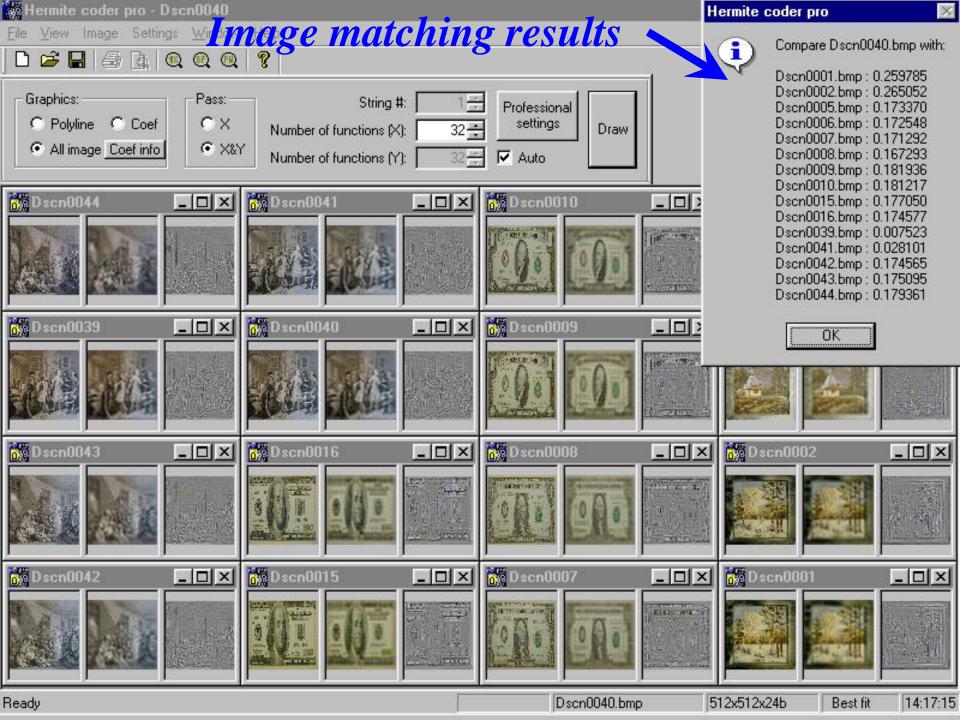
- 768 images (4.12Gb)
 - -1600x1200x24bit (5.5Mb)
 - -512x512x24bit (0.75Mb)
 - -32x32x3
 - -<0.14%
 - -4 sec. (for K7-750)

Image normalizing

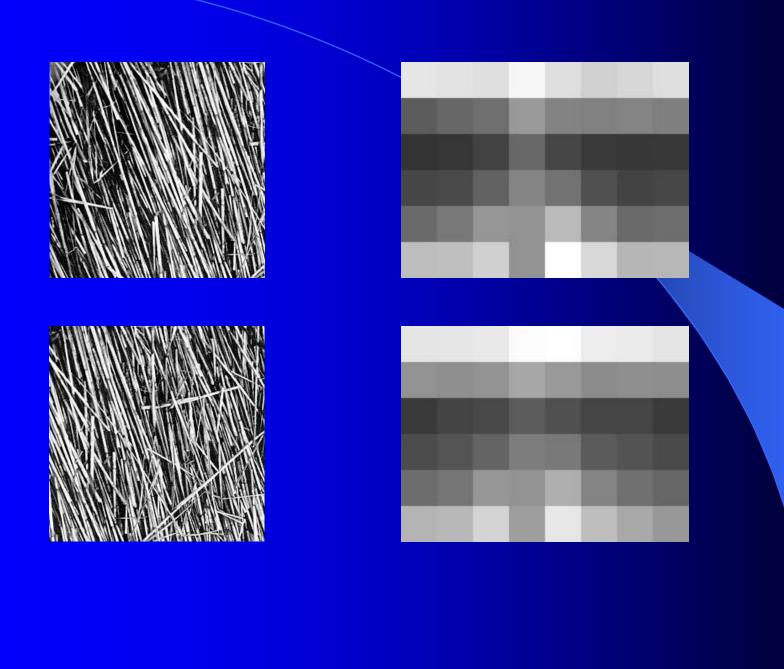
Graphical information parameterization

Parameterized image retrieval





Texture matching



A method of obtaining the texture feature vectors

Input function

$$f(x) = \sum_{i=0}^{\infty} \alpha_i \cdot \Psi_i(x)$$

Fourier coefficients

$$\alpha_i = \int_{-\infty}^{\infty} \Psi_i(x) \cdot f(x) dx$$

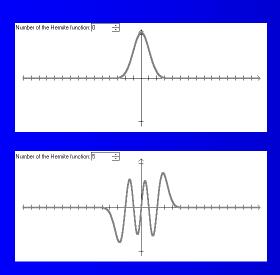
1-D to 2-D expansion

$$\psi_{n_1n_2}(x,y) = \psi_{n_1}(x) \cdot \psi_{n_2}(y),$$

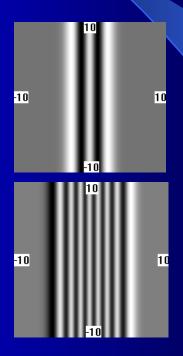
$$\psi_n(x,y) = \psi_n(x) \cdot 1$$

A method of obtaining the texture feature vectors

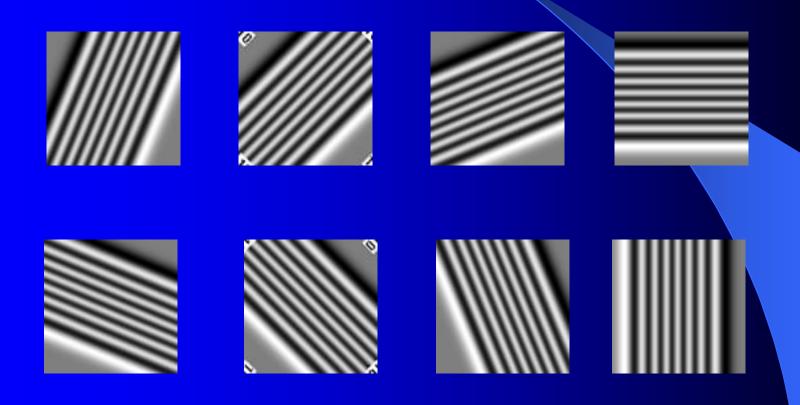
1-D Hermite functions:



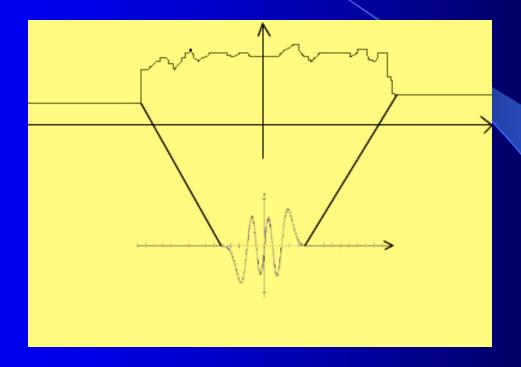
1-D to 2-D expanded Hermite functions:



Orientations



Localization problem



Decomposition process is optimal, if localization segments of the input function and filtering functions are equal.

Standard coding

In this approach to get the feature vectors we consider the functions $\psi_n(x,y)$ where n1=0..64, and 6 energy coefficients are calculated as:

$$E_{1} = (\alpha_{0})^{2} + (\alpha_{1})^{2},$$

$$E_{2} = (\alpha_{2})^{2} + (\alpha_{3})^{2} + (\alpha_{4})^{2},$$

$$E_{3} = (\alpha_{5})^{2} + (\alpha_{6})^{2} + (\alpha_{7})^{2} + (\alpha_{8})^{2},$$

$$E_6 = (\alpha_{33})^2 + (\alpha_{34})^2 + \dots + (\alpha_{63})^2 + (\alpha_{64})^2$$
,

f(x,y) is the source image.

Hierarchical coding

$$E_1 = (\alpha_0^{(1)})^2 + (\alpha_1^{(1)})^2,$$

$$E_2 = (\alpha_0^{(2)})^2 + (\alpha_1^{(2)})^2 + (\alpha_2^{(2)})^2 + (\alpha_3^{(2)})^2,$$

 $E_6 = (\alpha_0^{(6)})^2 + (\alpha_1^{(6)})^2 + \dots + (\alpha_{62}^{(6)})^2 + (\alpha_{63}^{(6)})^2,$

$$\alpha_i^{(1)} = \frac{1}{\sqrt{A_j}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_i(x, y) \cdot f(x, y) dx$$

$$\alpha_i^{(j)} = \frac{1}{\sqrt{A_j}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_i(x, y) \cdot (f(x, y) - \sum_{l=2}^{j} f^{(l-1)}(x, y)) dx, j > 1$$

f(x,y) is the source image.

Hierarchical coding without subtractions

$$E_{1} = (\alpha_{0}^{(1)})^{2} + (\alpha_{1}^{(1)})^{2},$$

$$E_{2} = (\alpha_{0}^{(2)})^{2} + (\alpha_{1}^{(2)})^{2} + (\alpha_{2}^{(2)})^{2} + (\alpha_{3}^{(2)})^{2},$$

$$\vdots$$

$$E_{6} = (\alpha_{0}^{(6)})^{2} + (\alpha_{1}^{(6)})^{2} + \dots + (\alpha_{62}^{(6)})^{2} + (\alpha_{63}^{(6)})^{2},$$

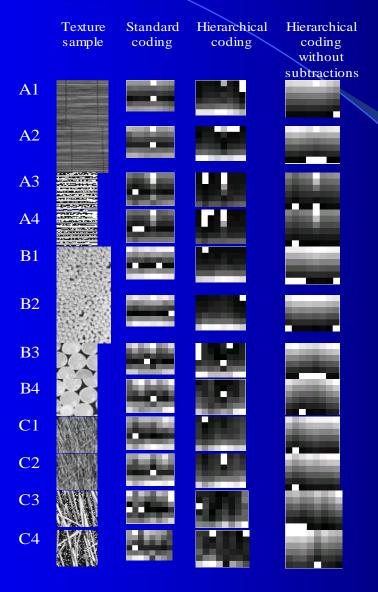
$$\alpha_{i}^{(1)} = \frac{1}{\sqrt{A_{j}}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_{i}(x, y) \cdot f(x, y) dx$$

$$\vdots$$

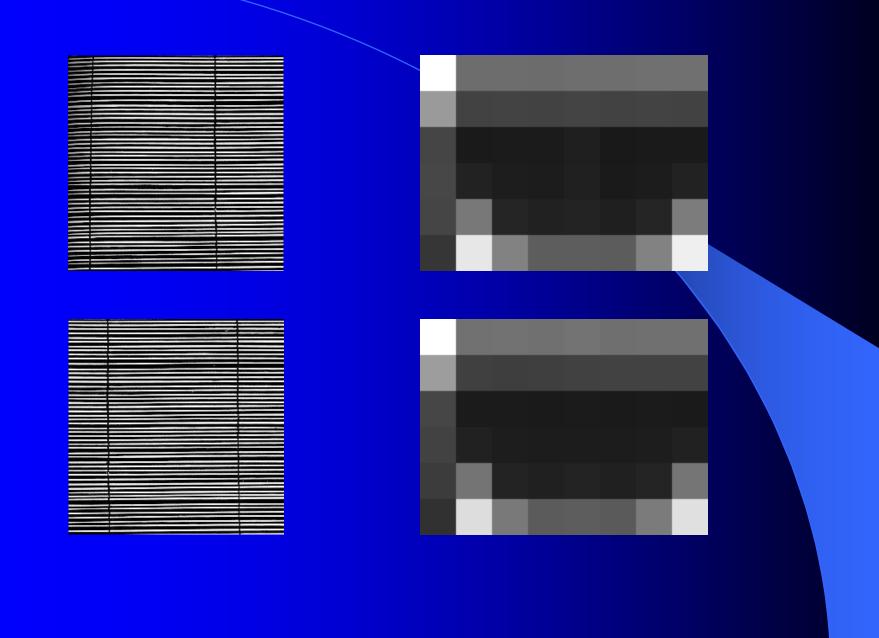
$$1 \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_{i}(x, y) \cdot f(x, y) dx$$

 $\alpha_i^{(j)} = \frac{1}{\sqrt{A_j}} \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \psi_i(x, y) \cdot f(x, y) dx, j > 1$

f(x,y) is the source image.



а	b	Standard coding	Hierarchical coding	Hierarchical coding without subtractions
a1	a2	0.004505	0.005349	0.003739
b1	b2	0.009905	0.008160	0.007742
c1	c2	0.017778	0.011848	0.009946
a3	a4	0.008807	0.006047	0.002422
b3	b4	0.020075	0.010667	0.006275
c3	c4	0.128322	0.101591	0.080176
a1	b1	0.488420	0.492238	0.491653
b1	c1	0.315644	0.304597	0.305442



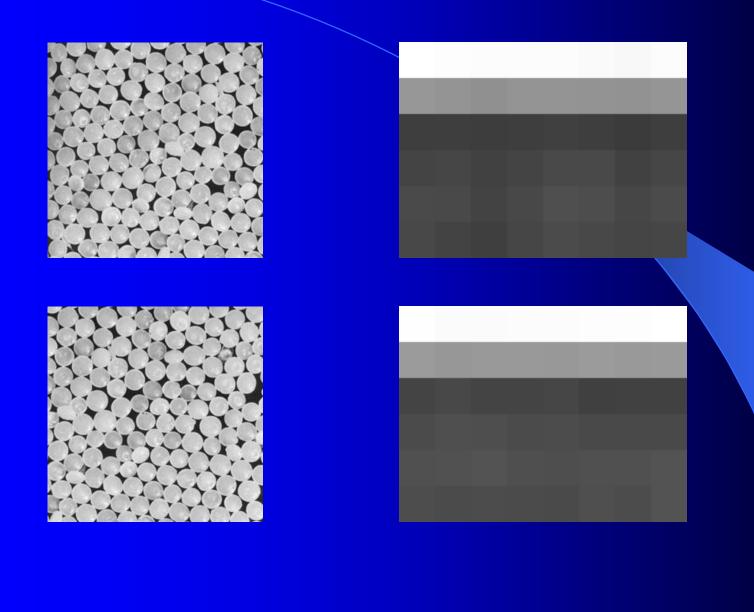
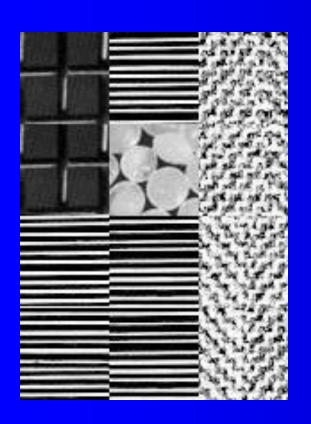
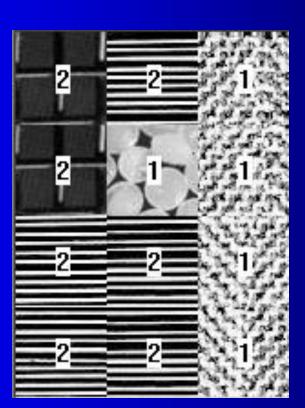


Image segmentation task: Brodatz textures





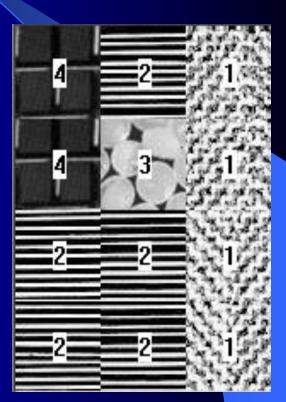


Image segmentation task

2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
I	2	2	2	2
1	2	2	2	2
1	2	2	2	2
1	11	1	1	118
1	1	1	1	1

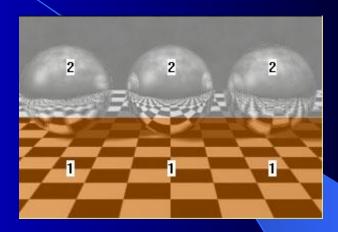
Image segmentation task

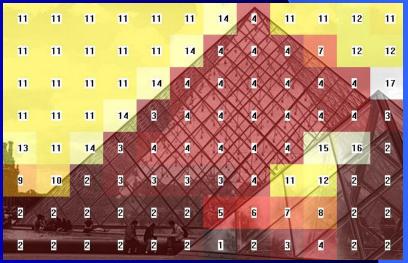
3	3	3	14	15	3	3	16	17	18	19	20	20	11
3	3	5	5	8	8	8	10	11	11	12	12	13	12
6	7	7	8	8	8	8	8	9	5	5	4	4	3
5	4	5	5	5	<u>5</u>	5	5	4	4	4	4	3	1
1	3	3	3	3	3	3	3	1	1	1	1	1	1
1	1	2	2	1	1	11	1	1	1	. 1	2	2	2
2 //	2	2	2	2	2	1	1	2	1	2	2	2	2
2	2	2	2	2	2	2	2	2	1	2	2	2	2
2	2	2	2	1	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2

											V			
2	2	2	3	2	2	2	2	4	4	4	2	2	3	
2	2	2	2	2	2	2	3	3	3	3	3	3	3	
2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2	2	2	2	2	2	2	2	2	2	2	2	1	1	
1	2	2	2	. 1	2	2	2	1	1	1	1	1	1	
1	1	1	1	7. <mark>1</mark> ,	1	1 1	1	1	1	1	1	1	1	١
1	1	ī	1	1	i	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1,	1	1	1	1/	1	1	1	
1	1	1	1	1	1	į.	1	1	ī	1	1	1	1	
1	1	1	ĺ	1	1	1	1	1	1	1	1	1	1	

Image segmentation task



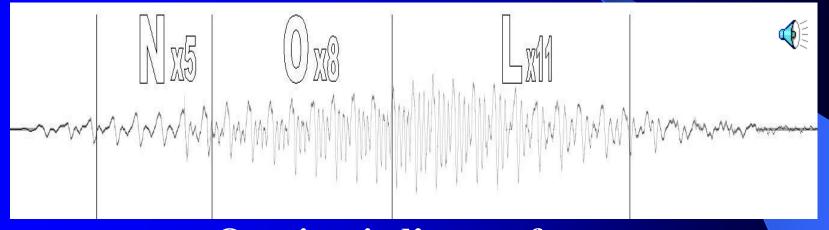




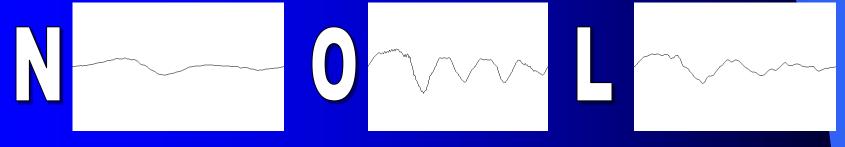
Texture parameterization using 2-D Hermite functions

$$\psi_{0,3}(x,y),\psi_{1,2}(x,y),\psi_{2,1}(x,y),\psi_{3,0}(x,y),\psi_{0,7}(x,y),\psi_{2,5}(x,y),\psi_{3,4}(x,y)$$

Low-level methods for audio signal processing



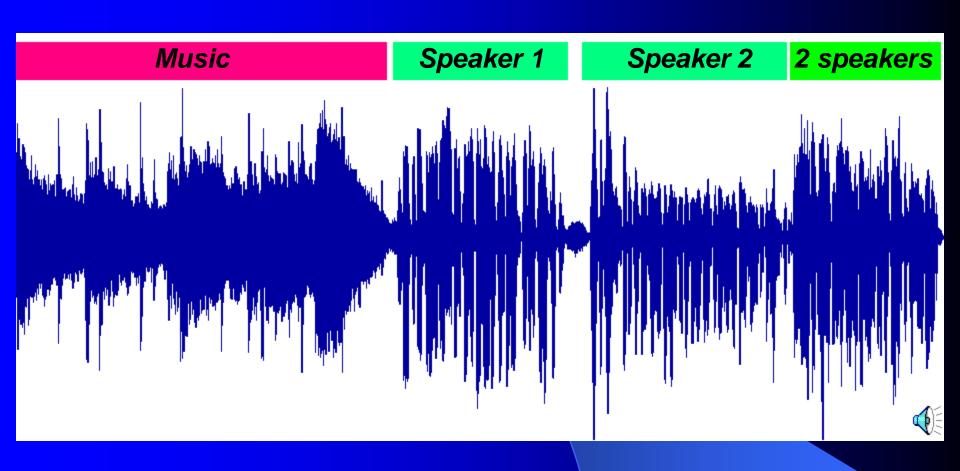
Quasiperiod's waveforms

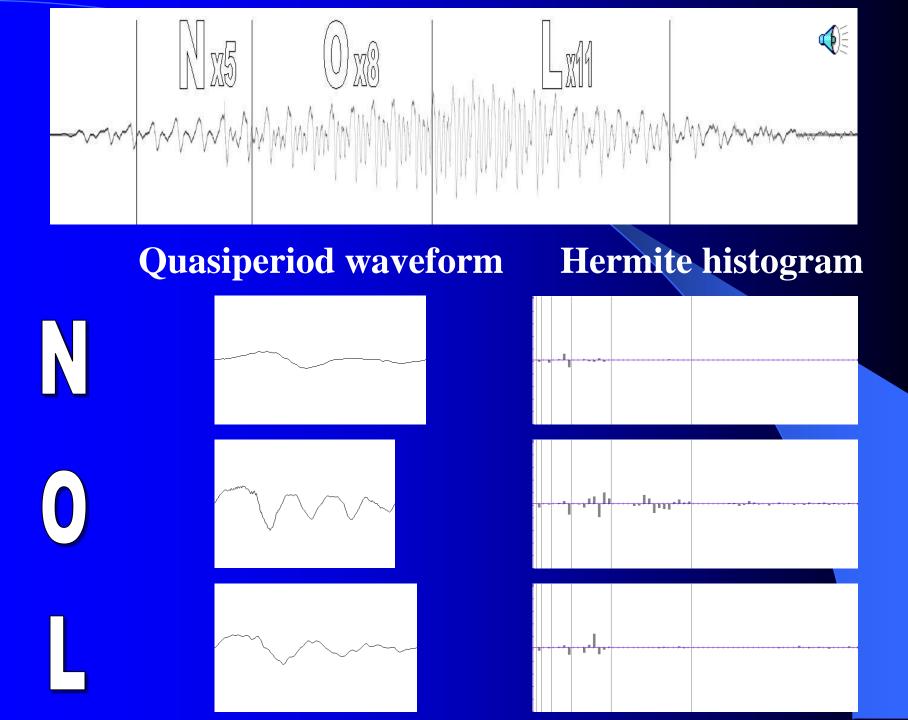


Areas of Hermite transform application:

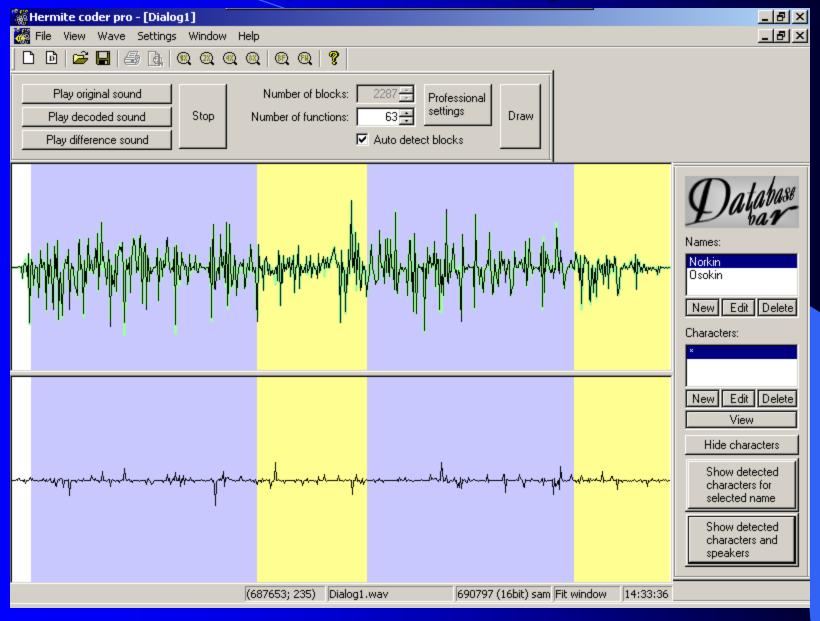
- Signal filtering
- Speaker indexing
- Speaker recognition using database
- Source separation

Audio sample

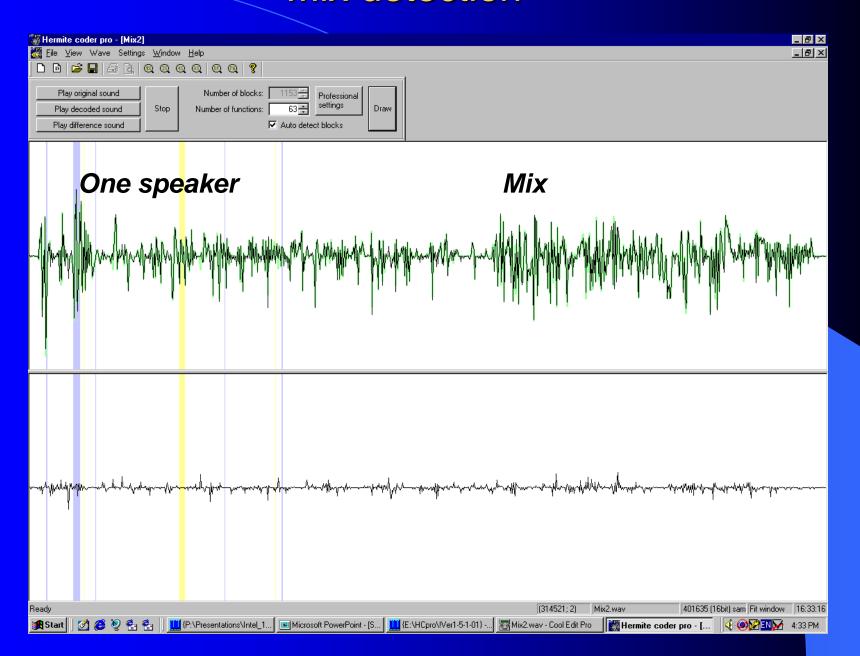




Speaker indexing

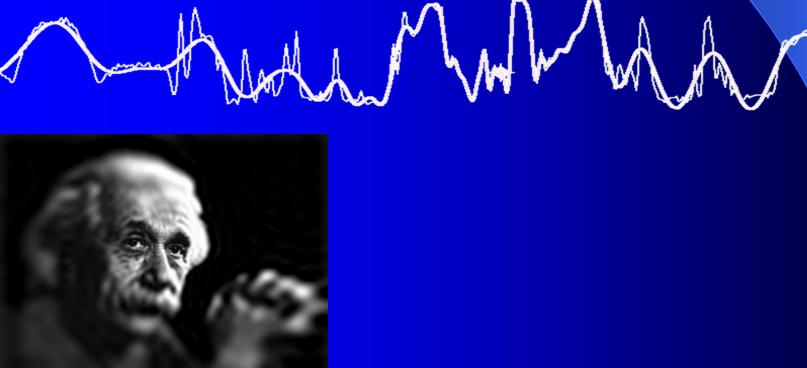


Mix detection



Faculty of Computational Mathematics and Cybernetics Moscow State University

Hermite Foveation



A foveated image is a non-uniform resolution image whose resolution is highest at a point (fovea), but falls off away from the fovea.

$$(Tf)(x) = \int_{-\infty}^{\infty} k(x,t)f(t)dt$$

$$k(x,t) = \frac{1}{\alpha|x-\gamma|+\beta}g\left(\frac{t-x}{\alpha|x-\gamma|+\beta}\right)$$

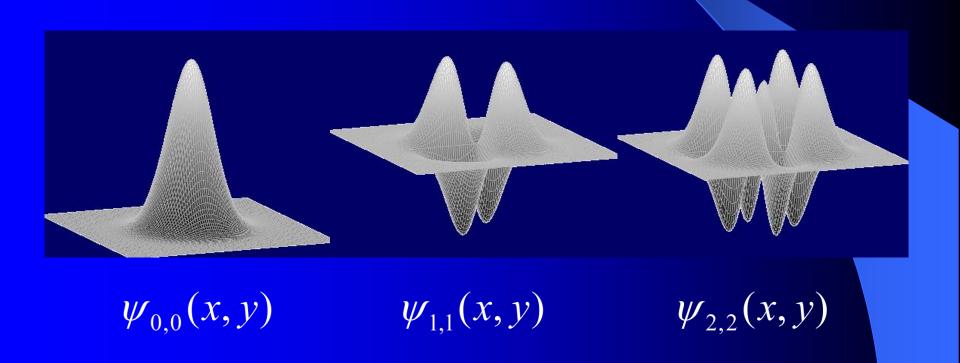
ALA. MWW

For foveation we used eigenfunctions of the Fourier transform (2D Hermite functions ψ_{nm}).

$$F(\psi_{nm}) = i^{n+m} \psi_{nm}$$

$$\psi_{nm}(x,y) = \frac{(-1)^{n+m} e^{x^2/2 + y^2/2}}{\sqrt{2^{n+m} n! m! \pi}} \cdot \frac{d^n(e^{-x^2})}{dx^n} \cdot \frac{d^m(e^{-y^2})}{dy^m}$$

The graphs of the 2D Hermite functions look like the following:



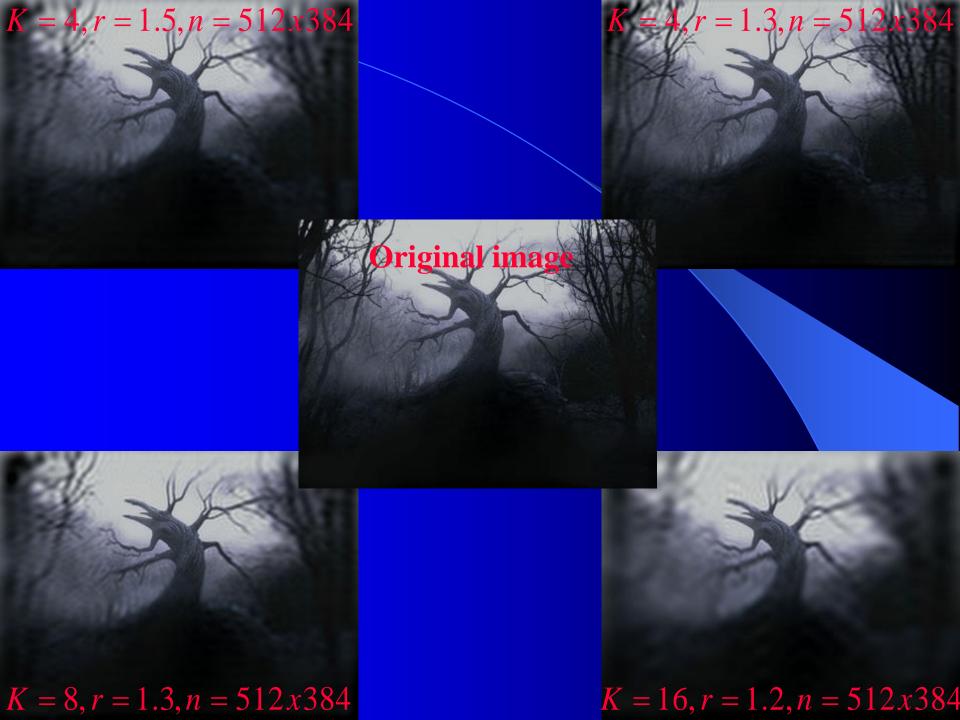
The kernel for Hermite foveation was defined

as:

$$k(x,t) = \sum_{i=0}^{\frac{n}{K}-1} \psi_i \left(A_{\frac{n}{K}-1} \frac{2x - w + 1}{w} \right) \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w} \right) + \frac{1}{2} \psi_i \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{w$$

$$+\sum_{j=1}^{K-1} \left(\max \left(\min \left(\frac{r}{r-1} \left(1 - \frac{2r^{j} | \gamma - x|}{w} \right), 1 \right), 0 \right) \cdot \frac{n}{K} \right) \left(A_{\frac{n}{K}-1} \frac{2x - w + 1}{wr^{j}} \right) \psi_{i} \left(A_{\frac{n}{K}-1} \frac{2t - w + 1}{wr^{j}} \right) \right)$$





Conclusion

Hermite foveation allows us to compress useful data, to improve performance of coding/decoding and to use advantages of a time-frequency analysis.