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ABSTRACT 

Spectral attenuation algorithms for audio noise reduction often generate annoying musical noise artifacts. Most ex-
isting methods for suppression of musical noise employ a combination of instantaneous and time-smoothed spectral 
estimates for calculation of spectral gains. In this paper, a 2D approach to the filtering of a time-frequency spectrum 
is proposed, based on a recently developed Non-Local Means image denoising algorithm. The proposed algorithm 
demonstrates efficient reduction of musical noise, without creating “noise echoes” artifacts inherent in time-
smoothing methods. 
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1. INTRODUCTION 

In the spectral attenuation (or spectral subtraction) 
methods for reduction of stationary noises, short-time 
spectral estimates are used to adaptively calculate sup-
pression gains for time-frequency spectral coefficients 
of a noisy audio signal [1]. Due to statistical variance of 
short-time spectral estimates, calculated gains can con-
tain random oscillations leading to spurious time-
frequency bursts of energy in the processed signal 
known as musical noise artifacts. They can be quite 
annoying and sometimes even more objectionable than 
the original noise. 

This paper suggests using a novel 2D method of 
smoothing of time-frequency transform coefficients to 
reduce the musical noise. It is the development of a re-
cently proposed Non-Local Means algorithm for image 
processing [2]. The key property of this algorithm is an 
implicit search for 2-dimensional feature patterns in the 
image and the use of these patterns to aid the process of 
denoising. 

The rest of the paper is organized as follows. In section 
2, we review existing methods of musical noise reduc-
tion. In section 3, we summarize the idea of a Non-
Local Means method for image denosing and propose 
its hybridization with the DFT thresholding method. In 
section 4, we describe application of this 2D adaptive 
smoothing to time-frequency coefficients during spec-
tral subtraction. In section 5, the results are discussed, 
and section 6 concludes the paper. 

2. EXISTING ALGORITHMS 

Simple methods for reducing musical noise artifacts 
include: 

1. Overestimation of a noise power spectrum den-
sity, which suppresses more noise, but also 
more low-level signal components, leading to a 
signal distortion. 

2. Imposing a lower limit on suppression gains, 
which leaves some part of noise unsuppressed 
and masks the musical noise. 

3. Restricting the speed of change of suppression 
gains in time, which is similar to the introduc-
tion of attack and release times in multiband 

gates, leading to suppression of transients and 
introduction of “noise echoes” artifacts in the 
processed signal. 

Beyond the simple methods, the commonly used 
method of Emphaim/Malah [3] uses “instantaneous” 
spectral estimates (called “a-posteriori”) and time-
smoothed spectral estimates (called “a-priori”) to calcu-
late suppression gains in a MMSE (minimum mean-
square error) way, under certain assumptions on distri-
bution of signal and noise. The idea of Ephraim-Malah 
method is to use time-smoothed SNR estimates at low 
SNR levels to reduce musical noise, and use instantane-
ous SNR estimates at high SNR levels to prevent smear-
ing or suppression of target signal. 

This method’s shortcoming includes the presence of 
“noisy echoes”: segments of weakly suppressed noise 
that follow target signals. They happen because at low 
SNR levels after transient signals, “a-priori” SNR esti-
mates, used for suppression, are high due to simple 1st 
order recursive time averaging. 

The algorithm described by Whipple in [4] utilizes a 
simple 2D analysis of magnitude spectrograms to find 
energy bursts that are localized in time and frequency. 
Such bursts are replaced with zero energy to suppress 
the musical noise. 

Another similar approach for processing of a 2D spec-
trogram is described by Goh et al. in [5]. The local vari-
ance of coefficients is used for detection of musical 
noise, and a median filter is used to repair regions de-
tected as musical noise. 

In the work of Lin and Gourban [6], a non-adaptive 2D 
smoothing of a magnitude spectrogram is used to detect 
speech/noise regions by applying a magnitude thresh-
old. The spectrogram for regions that are classified as 
noise is time-smoothed with a box filter. The speech 
regions are processed by the Epraim-Malah method. 

The algorithm by Soon and Koh [7] uses a 2D Fourier 
transform applied to a matrix of time-domain STFT 
(short-time Fourier transform) windows, which is 
equivalent to applying a 1-dimensional DFT to every 
row of a complex spectrogram. This allows one to effec-
tively analyze time correlations of STFT coefficients, 
but the frequency correlation of spectrograms is not 
exploited effectively. To alleviate this problem, the ap-
plication of algorithm [4] is suggested as a post-
processing step. 

Page 2 of 7 



Lukin, Todd Suppression of Musical Noise Artifacts
 

AES 123rd Convention, New York, NY, USA, 2007 October 5–8 

We propose an adaptive algorithm that accounts for 2D 
patterns in a time-frequency magnitude spectrogram and 
effectively suppresses musical noise using a recently-
developed Non-Local Means approach for image proc-
essing [2]. Unlike many prior art approaches, this is not 
a decision-based algorithm, which makes it less sensi-
tive to a possibly inaccurate detection of the noise level. 

3. A NON-LOCAL MEANS ALGORITHM 

3.1. Non-linear image denoising 

Many algorithms for image denoising are based on 
adaptive smoothing by means of pixel averaging. 
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Pixels from some local window Ω around the currently 
processed pixel xi,j are compared to the current pixel 
using geometric (by position) and photometric (by 
value) distance [8]. 
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Those pixels which are closer to the current one are 
averaged with a higher weight W(i,j,k,m). Comparison 
of pixel values prevents blurring of image details. 

3.2. The Non-Local Means algorithm 

Recently, a Non-Local Means (NLM) algorithm for 
image denoising has been introduced [2]. Instead of 
comparing values of single pixels, the NLM algorithm 
compares the content of image patches surrounding 
these pixels. 
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Here v(x) is a vector of pixel values from a geometric 
neighborhood of pixel x, which is usually defined as a 
square block centered at the pixel x. The range Ω for (k, 
m) in the NLM algorithm can be as large as a whole 
image, hence the name “non-local”. 

In this way, only pixels whose surrounding patches have 
a similar structure are averaged. This preserves image 
structure, fine repeating textures, and patterns signifi-
cantly better than with previous image denoising meth-
ods. 

The original NLM algorithm is very computationally 
expensive, but some optimizations are discussed in [9] 
and [8] allowing it to be used for real-time audio proc-
essing. 

4. ADAPTIVE 2D SPECTROGRAM SMOOTH-
ING 

Two-dimensional magnitude spectrograms are images 
with prominent structure: repeating horizontal lines of 
instrument harmonics, vertical onsets of transients, and 
frequency-modulated harmonics of speech and vocals. It 
is clear that one-dimensional recursive smoothing of 
spectrograms will blur many such details, especially for 
non-stationary audio content. That’s why a more pre-
cise, 2D adaptive method of smoothing is required. 

4.1. Applying NLM algorithm to spectrograms 

We propose to use a Non-Local Means algorithm for the 
smoothing of a spectrogram. It will be able to perform 
edge-directional smoothing and use repeating harmonic 
patterns as a guide toward adaptive averaging of spec-
trogram blocks. 

The input data to the NLM algorithm is a 2D array of 
signal-to-noise ratios, i.e. real non-negative STFT mag-
nitudes rated to noise thresholds for every STFT bin (if 
the noise is assumed white, the noise threshold can be 
set to a constant). Noise thresholds are assumed known; 
they can be learned from a noise-only section of the 
audio signal. A real-time estimation of noise thresholds 
is also possible, but is not a topic of this paper. 

It should be noted that NLM algorithm has been de-
signed to work with white noise. The noise in magni-
tude spectrogram X[f,t] (reflecting a variance of short-
term spectral estimates) is non-white because of correla-
tion of spectral data in frequency due to STFT window-
ing and in time due to overlapping of STFT windows. 
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However this noise is a low-pass filtered white noise. 
Indeed, every column of the magnitude spectrogram is a 
low-pass filtered spectrum of white noise:  

, where Z[f,t] is the spec-
trum of non-windowed white noise, which is white 
along the frequency axis, and H[f] is the frequency re-
sponse of a zero-phase low-pass weighting window 
used for STFT. Similarly, every row of the magnitude 
spectrogram is a low-pass filtered white noise because 
downsampling of X[f,t] in time produces spectra of un-
correlated portions of white noise. 

][],[],[ fHtfZtfX ∗=

This whiteness of a noisy spectrogram across the range 
of quefrencies (frequencies in a spectrogram space) that 
also contains the signal energy makes the application of 
the NLM algorithm possible. 

The noise threshold h in the NLM algorithm’s formula 
(3) defines the strength of desired spectrogram smooth-
ing. It should be noted that even strong smoothing by 
the NLM algorithm leaves major structures in 2D image 
intact, but eliminates more small structures (beyond 
musical noise). 

The resulting smoothed map of signal-to-noise ratios is 
suitable for use in spectral subtraction. Since the 
smoothing has reduced variations in the SNR map, the 
gain variations in spectral subtraction, leading to musi-
cal noise, will also be reduced. 

4.2. Hybrid DFT thresholding + NLM smooth-
ing algorithm 

NLM is a novel and high-quality algorithm for image 
denoising, but still it has few specific artifacts. In [10], 
it is proposed to combine NLM denoising with a DFT 
thresholding method (DFTT), which is similar to the 
spectral subtraction, to achieve better image denoising 
performance. 

For spectrogram smoothing, DFTT has several appeal-
ing advantages. The 2D discrete Fourier transform is 
able to compactly localize energy of repeating waves of 
arbitrary direction in a 2D signal. For the case of appli-
cation to magnitude spectrograms, DFT is going to aid 
with a compact localization of harmonics, which are 
quasi-periodic signals that may not be parallel to the 
time-frequency axis in case of pitch modulation. 

As described in [10], the DFTT algorithm subdivides 
the 2D image into overlapping blocks, applies a weight-
ing window to each block, performs the 2D DFT trans-

form, and applies gain reduction similar to that used in 
spectral subtraction algorithms. After gain reduction, the 
DFT is inverted, and windowing is applied again before 
pasting the reconstructed block in the resulting image. 

For smoothing of spectrograms, we have added a DFTT 
stage after the NLM algorithm. The input data to DFTT 
are both noisy spectrogram and the one pre-processed 
by NLM algorithm. The second one is used for SNR 
estimation in the DFTT suppression rule, while the first 
one is undergoing the analysis/modification/synthesis 
cycle, as suggested in [10]. The noise spectrum in the 
DFTT is assumed to be white. 

4.3. Implementation details 

In our implementation, we have used the following pa-
rameters. Analysis and synthesis filter banks are based 
on a STFT with 50 ms long Hann windows that have a 
75% overlap. 

The NLM algorithm is using 8x8 blocks for pattern 
matching, and the search range is +/–8 bins along the 
frequency axis and [–16…+4] blocks along the time 
axis. A non-symmetrical search range is used to reduce 
the overall algorithm processing latency and favor post-
echoes to pre-echoes of noise. The pasted block size is 
4x4 bins, for the sake of optimization. 

The DFTT algorithm is using 32x16 blocks, where 32 is 
the number of bins along frequency axis. We are using 
blocks elongated along frequency axis to more effi-
ciently account for the harmonic structure of the spec-
trum in the DFTT algorithm. The analysis/synthesis hop 
of the DFT is 8 and 4 bins correspondingly. A 2D Hann 
window is used both for analysis and synthesis. 

Particular noise thresholds are not given here, because 
they essentially depend on a user preference to the 
amount of reduction of musical noise. There is a trade-
off between the amount of musical noise reduction and 
the suppression of minor details in the desired signal. 

5. RESULTS 

We have performed several experiments with a test 
sample compiled from a diverse audio material, includ-
ing speech from the “Orator” database (2 male and 2 
female utterances were taken) and various types of mu-
sic, including transient content. We have used artifi-
cially generated additive white noise at different SNR 
levels. Below we present analysis of spectrograms, lis-
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tening observations and PSNR figures. Corresponding 
audio samples and more detailed spectrograms can be 
found at this paper’s web page [11]. 

Figures 1-6 show magnitude spectrograms of a 4-second 
fragment of the test signal containing music with vocals 
at SNR = 15 dB. We have selected a fragment contain-
ing a transient sibilant in vocals (around the middle of 
the spectrogram) and sharp transients of drums (the 
right part of the spectrogram). 

AES 123rd Convention, New York, NY, USA, 2007 October 5–8 

Figure 3 presents the result of a simple spectral subtrac-
tion with per-bin attenuation, without any smoothing of 
a spectrogram. A musical noise is clearly visible as mul-
tiple unsuppressed “dots” of noise and very objection-
able in listening tests. 

In figure 4, the result of the Ephraim-Malah algorithm is 
presented. The musical noise has been reduced. But as a 
result of one-dimensional recursive smoothing, there are 
areas of low suppression after transient events, visible 
as “noisy tails”. The length of these tails can be con-
trolled by the recursive filtering coefficient, but reduc-
tion of time smoothing leads to increase in musical 
noise. Another drawback of the Ephraim-Malah algo-
rithm is the excessive suppression of transients at low 
SNR levels (visible as reduced brightness of transients 
in figure 4, e.g. around 9 sec). This has resulted in re-
duction of overall PSNR level, compared to a simple 
spectral subtraction. However the overall sound is more 
pleasing due to reduction of a musical noise. 

Figures 5 and 6 display spectrograms after NLM and 
NLM+DFTT algorithms. The musical noise is effec-
tively suppressed in both time and frequency directions, 
and there are no noisy areas after transients. The tran-
sients after the NLM algorithm are somewhat sup-
pressed, similarly to the Ephraim-Malah algorithm. 
However the NLM+DFTT algorithm has reduced sup-
pression of transients while still preserving good sup-
pression of musical noise. 

Table 1 presents PSNR improvement after applying 
different noise reduction algorithms to test files with 
artificial noise at different SNR levels. In each case, the 
noise threshold level has been manually tuned to maxi-
mize PSNR. 

These PSNR measurements show that simple methods 
for musical noise reduction often result in worse PSNR 
figures than a regular spectral subtraction, due to exces-
sive suppression of parts of a signal. However listening 

tests usually demonstrate the preference of having the 
musical noise reduced. At the same time, the proposed 
algorithm for musical noise reduction achieves some 
improvement of PSNR, compared to a regular spectral 
subtraction. 

 

Method         SNR 25 dB 15 dB 5 dB 

Simple subtraction 4.44 6.69 9.74 

Ephraim-Malah 3.96 5.98 9.46 

NLM smoothing 4.37 6.56 9.61 

NLM+DFTT 4.53 6. 79 9.98 

Table 1. Improvement in PSNR after noise reduction 

The PSNR figures of our algorithm slightly depend on 
the amount of musical noise reduction. A side effect of 
the excessive musical noise reduction with our algo-
rithm is modulation of noise by a signal and suppression 
of details of the desired signal. 

Our implementation of the algorithm runs marginally 
slower than real time on a 3 GHz P4 workstation for a 
mono 44.1 kHz audio signal. It is possible to signifi-
cantly reduce the computational complexity by using 
larger analysis/synthesis hops in the DFTT algorithm 
and larger pasted block size in the NLM algorithm, at 
the expense of a slight quality reduction. Also, the algo-
rithm allows easy parallelization for multi-core proces-
sors. 

6. CONCLUSION 

Many simple algorithms for musical noise reduction 
result in deterioration of PSNR compared to a regular 
spectral subtraction, due to excessive suppression of 
desired signal details. 

The proposed algorithm using adaptive 2D spectrogram 
smoothing achieves effective reduction of musical noise 
artifacts with minimal damage to the target signal. The 
algorithm is based on a novel Non-Local Means image 
denoising method combined with a DFT thresholding 
method, which are applied to a 2D magnitude spectro-
gram. Good results in listening tests are supported by 
inspection of spectrograms and PSNR measurements. 
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Figure 1. Clean fragment of the test signal 

 

Figure 2. Noisy signal, SNR = 15 dB. 

 

Figure 3. Simple spectral subtraction 

 

Figure 4. Ephraim-Malah spectral subtraction 

 

Figure 5. NLM smoothing of spectrogram 

 

Figure 6. NLM+DFTT smoothing of spectrogram 
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