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New method of image restoration, based on quasi-solution method for compact set of 

functions with bounded total variation is introduced. Application of this method does not 

need an estimation of the noise level, which is necessary to choose regularization parameter 

in the Tikhonov regularization method. The approbation of this method with test images 

shows effectiveness of this method for image deringing. 

Introduction 

Image restoration is one of the classical inverse problems in image processing and computer vision, 

which consists of the recovering information about the original image from incomplete or degraded 

data. Reconstruction of an image from observed data is often an ill-posed inverse problem. The 

solution of these inverse problems can be achieved using regularization methods, which turn the 

problem into a well-posed, and prevent the amplification of noise during the reconstruction process.  

Many linear problems of image restoration which are not well-posed can be posed as problems of 

solution of equation 

UuZ,zu,=Az  , (1) 
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where Z and U are Hilbert spaces, UZA :  is a linear continuous operator, and the inverse operator 

1A  exists but is unbounded. Thus, the problem (1) is ill-posed [1, 2] and the corresponding matrix for 

operator А, is ill-conditioned. 

Tikhonov regularization method [1, 2] is usually used for the stabilization of this problem. This makes 

the problem well-posed and prevents noise amplification during restoration when we construct an 

approximation z~  of unknown source function z  from observed degraded (noisy) function 
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For image restoration tasks [3], we find function z~ , minimizing functional 
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where u is initial degraded image. 

In image processing, the following classes of functions  are usually used: (a) Tikhonov functional 

tt  )( , (b) total variation (TV) tt  )(  [4,5]. The paper [3] introduces other useful functions. 

The utilization of Tikhonov functional leads to quadratic problem, but strongly smoothes sharp edges. 

TV method allows to find discontinuous solutions, so it better preserves edges during restoration. Its 

application for image restoration shows good results (it does not oversmooth or displace edges), but has 

drawbacks. We need to estimate noise level  for appropriate regularization parameter selection. 

In this paper, we consider an alternative regularization method, based on discrepancy minimization on 

the set of functions with bounded TV, which is compact in 2L  space. 

The article is organized in the following manner. TV Quasi-solution method is discussed in section 2. 

Section 3 presents numerical scheme. Test results for different image enhancement tasks are shown in 

section 4. 

Quasi-solution Method 

Quasi-solution method has been introduced by Ivanov in his papers [6].  



Definition. Point MzK   for which uAz   reaches a minimum on a given compact set M of the 

space Z is called quasi-solution on M for a given u  

uAzz
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K 

infarg . (3) 

If we assume that operator А is continuous, the discrepancy uAz   will be continuous functional, 

which reaches the infimum on compact set M. Thus, a quasi-solution exists for every Uu . 

Lets note as 
KZ  set of quasi-solutions (3) on compact set M for element u . 

If for exact right part u  the equation (1) has single solution z  which belongs to the compact M, then 

0sup 


zz
KZz 

, when 0 uu  [2]. So the problem of quasi-solutions determination is well-posed. 

Quasi-solution method for bounded total variation functions (TVQ) 

We applied quasi-solution method for solving problem (1) in one-dimensional case.  

Definition. The total variation of a real-valued function f  defined on an interval ],[ ba  is the value 
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1sup , where },,{ 0 nxxP  is a partition of ],[ ba  [7]. 

The set of bounded functions   CzV:z=V b

aС  , with variation less then constant 0C , is a 

compact set in  baL ,2  space. Thus, approximate solution of a problem (1) found on the set СV  will 

converge to the exact solution  baLZz ,2 , if 0 uu . 

So we consider the following total variation quasi-solution method (TVQ) to solve problem (1) in one-

dimensional case: we construct the sequence that minimizes the discrepancy functional 

  2

δuAz=zF   on the set of functions with TV less than given value С. 

It is necessary to underline that TVQ method does not need information on the noise level  in contrast 

to Tikhonov regularization method. Instead of regularization parameter we use the value of signal TV 

as the stabilizing parameter.   



Numerical Scheme 

For the first time the numerical method to solve TVQ problem has been considered in the book [8]. 

After discretization, we get the following problem: to construct a sequence of  vectors n

l Rz  that 

minimizes discrete analog of the discrepancy functional F  on the convex set CV , where CV  is the set 

of vectors nRz , which components satisfy conditions: 

      Czz++zz+zz nn  12312  

0=zn . 

As    czVzV b

a

b

a  , it is natural to fix the value of function on an end of segment ],[ ba . Thus we 

assume that we know one of the boundary value  az  or  bz   (hereinafter we assume, that   0=bz , 

thus 0=zn ). 

Since considered functional has Frechet derivative satisfying Lipschitz condition with the constant 

2
2 A=L , the conditional gradient method can be used to solve this problem [9]. 

The Conditional Gradient Method 

The conditional gradient method generates a sequence }{ lz  of approximations according to the 

following procedure.  

1. First we choose an arbitrarily vector CVz 0 . 

2. Along with minimizing sequence lz , we construct auxiliary sequence lz  

     z,zF'=z,zF' l
nim
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The solution vector   z,zF'z l
Vz

l
C

 minarg  exists, but it is not necessary unique.  

Vector lz  belongs to the boundary of the CV . 



In our case, the considered set of vectors CV  represents convex polyhedron with  12 n  vertices in 

nR  space. Polyhedron vertices  jТ ,   11,1,1  n,,,n=j  can be found out analytically and 

look like: 
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So the problem (4) can be solved by simple enumeration of these vertices. 

3. After construction of the auxiliary vector lz  we build vector 1+lz  by the formula 

 llll+l zzλ+z=z 1 , 

where  0,1lλ  is the solution of one-dimensional minimizing problem 
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In our case, operator A is linear, so )(zF  is a quadratic functional. Thus the problem (5) is trivial: to 

find parabola minimum on the segment [0,1]. 

The set CV  is convex, so C+l Vz 1 . Thus, after beginning of iteration process with the vector CVz 0 , 

we will not fall outside the limits of the set CV  during minimization. If operator A is linear, the 

constructed sequence lz  is minimizing sequence for functional )(zF  on the set CV . 

Applications 

The proposed TVQ regularization method is applicable in different areas like image restoration, super-

resolution and interpolation. Below the TVQ method is applied to image deringing.  

Gibbs phenomenon (ringing effect) is caused by the quantization or truncation of the high frequency 

information by approximation method. It can be seen for the cut off of the coefficients of Fourier or 

wavelet transform [10]. Ringing caused by iterative deconvolution algorithms is analyzed in [11].  In 

the spatial domain, this effect produces spurious oscillations near sharp edges. 



To reduce Gibbs phenomenon we have applied TVQ method with unit operator A. 

In this case the constant of TVQ method С is a smoothing parameter. Decreasing of С leads to Gibbs 

effect suppression but also smoothes the result. 

It is obvious, that constant C selection equal to the source undisturbed function TV value promotes the 

best results. In real situations, we do not know information on TV of the undisturbed function and we 

set parameter С equal to TV value of the given function multiplied by a decimation coefficient.  

Fig. 1 shows Gibbs effect reduction for the result of function approximation by 100 functions of 

Fourier series. 

 

 

 

Fig. 1. Gibbs effect reduction. 

Source signal (with Gibbs effect) (dots) and smoothed signal (decimation coefficient is equal to 0.75) (solid line). 

As we can see TVQ method eliminates ringing effects and practically does not decrease edge strength. 

For image processing (see a result in Fig. 2) we perform one dimensional TVQ procedures for every  

row  and every column of image. The resulting image is average of these two obtained images. 

Conclusion 

In this paper, we have considered novel image restoration procedure based on quasi-solution method 

for the compact set of functions with bounded TV. The application of this method does not need an 

estimation of the noise level  , which is necessary to choose regularization parameter in the Tikhonov 

functional. This information on the level of noise is usually unavailable and the selected regularization 

parameter does not have a reasonable explanation. In our case, we use the information on image TV 



value. The approbation of this method with test images shows effectiveness of this method for image 

deringing. This quasi-solution method looks also promising to be used in other areas of TV functional 

successful applications. 

 

  

a) Source image b) Smoothed image (decimation coefficient equal to 0.75) 

  

c) Detail of a source image d) Detail of a smoothed image 

Fig. 2. Gibbs effect reduction. 
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