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ABSTRACT 

 

This paper presents a new adaptive post-processing 

algorithm for ringing artifact reduction after image 

interpolation (upsampling). The algorithm is based on the 

concept of total variation (TV) for ringing control. It uses 

known TV of the blocks of the low-resolution image. 

Conditional gradient, subgradient and projection subgradient 

methods for this algorithm are considered and analyzed. A 

test set of 181300 overlapping 11x11 blocks of real images 

was used for local algorithm optimization and analysis. 

Local conditional gradient method shows the best objective 

and subjective results. 

 

Index Terms— deringing, total variation, image 

interpolation, image enhancement 

 

1. INTRODUCTION 

 

Existing image deringing algorithms are usually focused on 

ringing reduction after specific resampling or compression 

algorithms and do not use information on the downsamlped 

or undisturbed image. They can be divided into the 

following large groups: 

1. Algorithms that suppress ringing and block effect for 

specific compression algorithms. For example, methods 

based on partial differential equations are used for 

JPEG2000 deringing [1]. JPEG blocking and ringing effects 

are reduced by filtering in DCT domain [2], or by specific 

artifacts removing algorithms [3]. 

2. Algorithms using knowledge of the structure of  

image or using edge detection. The example is cartoon 

deringing using  example-based synthesize [4]. 

3. General filtering algorithms like median filtering [5], 

diffusion [6], deconvolution, regularization [7], or edge 

enhancement [8]. Ringing suppression in this case is not a 

primary goal and it results in image oversmoothing. 

In this paper we design an adaptive image deringing 

(Gibbs effect suppression) algorithm for the case of image 

post-processing after image interpolation (upsampling). The 

method is based on the concept of TV for ringing control. It 

uses known TV of the blocks of the low-resolution image.  

Originally, TV method in image processing literature 

was proposed by Rudin, Osher and Fatemi [9] where TV 

image denoising was considered. Gibbs phenomenon 

(ringing) is also associated with image TV [10]. 

In two-dimensional case, TV can be defined in different 

ways.  
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The first variant was used by Rudin, Osher, Fatemi, but 

many image processing algorithms use the second one [11]. 

We use the second variant. 

General TV minimization problem can be posed in 3 

forms.  
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where A  is a continuous linear operator. The first problem 

is a particular case of Tikhonov regularization method, and 

this problem is well-posed [12], because )(zTV  is a convex 

functional. The second one is a particular case of a problem 

of finding quasi-solutions [13]. The set M  is convex, and 

the obtained problem is well-posed under additional 

condition that z lie in a bounded set. This is true in the case 

of EA   (unit operator). The third problem is also well-

posed. Using the approach [14] we have proved the 

equivalence of these forms in the case EA  . Thus for any 

C  there are   and  , so the solution of the first problem is 

also the solution of the second and the third problems and 

vice versa. 

 

2. PROBLEM DEFINITION 

 

First we consider one-dimensional TV problem with EA  

in discrete form for an initial signal v  and upsampled signal 

u  with scale factor s . TV of high-resolution signals and 

images is usually greater than their low-resolution variants. 

Many real objects have fractal nature and there are fractal-

based resampling algorithms [15], but most of the 

resampling algorithms do not use this fact. We assume, that 

TV does not change, and additional variation of upsampled 



image is caused by ringing artifacts. So, if )()( vTVuTV  , 

then we solve the following variational problem for 1-D: 
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In two-dimensional case, we assume, that the variation 

of any single row or column does not change, but the 

number of rows and columns is proportional to the scale 

factor s . So, the problem of image deringing can be 

considered as 
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We pose two problems: standard (global) TV problem 

for entire image and local block TV variation problem. 

 

2.1. Global deringing 

 

We consider interpolated image u  as a function of a Hilbert 

space H  with Euclidian norm and scalar product. The set of 

images with bounded TV  )}()(|{ vTVCzTVZzM   

is a convex set in H . We find Euclidian projection of 

u onto M : 

2
minarg uzz

Mz



, where 

)}()(|{ vTVsCzTVZzM  . 
(1) 

This algorithm can also be used for general deringing, 

when initial image is unknown. In this case, we define TV 

reduction factor ]1,0[k  and solve the problem 

2
minarg uzz

Mz



, )}()(|{ vTVkCzTVZzM  . 

This problem can be also solved by regularization 

method: 
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where )(C   is a regularization parameter. The problem 

(1) is equivalent to (2). 

 

2.2. Local deringing 

 

Images are not uniform, and ringing artifacts are not 

uniformly distributed and the method, which reduces TV for 

the whole image is not effective. Ringing artifacts should be 

removed locally. We divide both initial and interpolated 

image into a set of corresponding square blocks with equal 

size. Each pair of blocks is processed by global deringing 

algorithm separately. Overlapping blocks are taken to 

eliminate blocking artifacts. 

The size of these blocks is chosen in accordance to the 

size of ringing effect. It depends on used interpolation 

algorithm. For example, for interpolation by 2, we analyzed 

blocks from 7x7 (4x4 in initial image) to 15x15 in 

interpolated image (8x8 in initial image). Small size results 

in bad ringing suppression, big block size give loss of fine 

details. Our test results were practically the same for block 

size in the region from 7x7 to 15x15. 

 

3. NUMERICAL METHODS ANALYSIS 

 

There are several effective iterative methods to solve 

problems (1) and (2). We consider conditional gradient 

method and subgradient projection method for solving (1), 

and subgradient method for solving (2). A set of 100 nature 

and architecture images with 400x300 resolution was used to 

test the methods. We downsampled the images by 2 using 

Gauss blur with radius 0.7 and then upsampled them by 

regularization-based interpolation algorithm [16]. Next we 

applied deringing method and compared the results with 

initial images (reference images). Below we show the results 

for overlapping 11x11 blocks (1813 per image) and for the 

global method. 

 

3.1. Conditional gradient method 

 

Conditional gradient method for minimization of convex 

functional 
2

2
)( uzzF   in a convex polyhedron was 

introduced in [17]. The main idea of this method is to find a 

minimizing direction from a finite set of vectors [18]. 

The vertices of the convex set })(|{ CzTVzM   can be 

written easily only for one-dimensional case and we use one-

dimensional algorithm to process two-dimensional images.  

It is applied separately to a set of corresponding rows and 

columns of the source and interpolated images. 

The following ways of constructing the resulting two-

dimensional image by the algorithm were analyzed: 

1. We process the interpolated image horizontally (by 

rows) Hzz  . This means that each row of image z  is 

processed independently from others, and the processed 

rows form image Hz .  Next we process the interpolated 

image vertically (by columns) Vzz  , and calculate the 

weighted sum between these resulting images 

]1,0[,)1(   VHR zzz . 

2. We compute two resulting images: the first one is 

processed horizontally and then vertically HVH zzz  , 

and the second one is processed vertically and then 

horizontally VHV zzz  . The final image is calculated as 

]1,0[,)1(   VHHVR zzz . This is twice slower 

than the first way. 

Weight value   can also be chosen differently: 

1. 5.0 . 

2. The weight   is chosen in accordance with 

minimization the discrepancy 
2

uzR  . It is correlated with 



the optimal coefficient opt , which minimizes the 

discrepancy between the resulting image and reference 

image 
2

uzR  . For the test image set 27.0),( optcor  . 

3. Choose  equal to 0 or 1 by analysis of the block 

structure. This way is twice faster than first two, because we 

need to calculate only single result Hz  or Vz  ( HVz  or 

VHz ), but not both. We use the following algorithm: if 

horizontal TV suppression value is greater  than vertical 

)()()()( vTVsuTVvTVsuTV VVHH  , where 




 duuTV xH ||)( , 


 duuTV yV ||)( , then we use 

1 , else 0 . 

The average PSNR test set results for 200 iterations are 

 1st way 2nd way 

no processing 28.38 

5.0  29.15 29.24 

]1,0[   29.00 29.23 

0  or 1  29.05 29.22 

Table 1.  2-D processing parameter analysis results. 

 

The second way of calculating Rz  and 5.0  gives 

the best results. However, the third way of choosing   can 

be used if we need to accelerate the algorithm. 

 

3.2. Subgradient method 

 

Generally, the subgradient method looks like follows [19]: 
)()()1( k

k
kk gzz 

,  
)( )()( kk zFg 

, 

where )(kg  is any subgradient of )(zF  in )(kz , k  are the 

step lengths. )(kg  is an element of subgradient set )( )(kzF  

of )(zF  in )(kz  if it satisfies the condition 

),()()( )()()( kkk zzgzFzF   for all z . We use this 

method for minimizing functional (2) with k
k  0 . 

This method is effective in two-dimensional case as 

well as in one-dimensional, but the disadvantage is that it 

needs calculation of regularization parameter  , while the 

function )(C   is unknown. The function 

)()(log)(  Cfxf   is non-increasing and close to 

linear function. We estimate logx  by using dichotomy 

method. However, it requires to run the minimization of 

regularization functional (2) for several different  , so the 

subgradient method is quite slow. 

 

 

3.3. Projection subgradient method 

 

Projection subgradient method is used instead of simple 

subgradient method if a problem has a constraint Mz . It 

is similar to subgradient method and it can be formulated in 

the following form [19]: 

),( )()()1( k
k

k
M

k gzprz   (3) 

where Mpr  is the projection operator onto convex set M . If 

the set M  is defined as }0)(|{  zfzM , where )(zf  is 

a convex functional, then the projection operator can be 

approximated iteratively. In our case 
2

2
)( uzzF  , 

CzTVzf  )()( , and the solution of minimization problem 

is equal to the projection of u  onto the set M , or just 

performing one iteration of (3) with uz )0( . This approach 

is also used for image restoration in [20]. The projection can 

be calculated approximately as )()()1( k
k

kk gzz  , where 
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3.4. Methods summary 

 

We have analyzed the behavior of these methods in one-

dimensional case for 50 iterations.  
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Fig. 1.  Numerical methods comparison in 1-D case. 

 

Conditional gradient method shows good results on 

simple input data like step function, but it convergences very 

slowly on complex data even for bar function. So, it can be 

effectively used only for processing of small blocks. 

Regularization (subgradient) method (2) provides good 

results, but it requires pre-calculating regularization 

parameter, so this method is quite slow. 

Both conditional and subgradient methods converge to 

the solution of (1) if number of iterations tends to infinity. 

One-step projection gradient method is effective, but it 

never converges to the solution of (1). This method 



smoothes edges but if the Gibbs phenomenon is low, then 

the difference between interpolated image and optimal 

image is small, and the error between optimal image and the 

result of projection gradient method is very low. 

Next, we have processed the test image set by these 

methods and calculated average PSNR values, which are 

shown in table 2. The results were different for different 

images. Note that subgradient method for global deringing is 

a solution for pure TV minimization problem (1). 

 Global 

deringing 

Local 

deringing 

No processing 28.38 

Conditional gradient method 

(2nd way, 5.0 ) 

23.33 29.24 

Fast conditional gradient 

method(2nd way, 0  or 1) 

22.17 29.22 

Subgradient method 28.71 28.64 

Projection subgradient 28.75 28.68 
Table 2. Results for test image set. 

 

Image upsamling result by a modification of Lanczos 

interpolation method and post-processed image by the 

proposed method (2nd way conditional gradient method 

with α = 0.5) is given in Fig. 2. 

 

   
a) b) c) d) 
Fig. 2. Method results: a) low-resolution image; b) reference 

image; c) interpolated image; d)deringed image. 

 

4. CONCLUSION 

 

New image deringing method for image interpolation using 

information on the TV from initial image has been proposed. 

It was found that local approach with conditional gradient 

method shows better results than pure TV approach. 

Experiments show high efficiency of the method for 

resampling post-processing. The corresponding free 

resampling software is available at 

http://imaging.cs.msu.su/software. The work was supported 

by RFBR grant 06-01-39006-ГФЕН_а. 
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