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ABSTRACT

A new edge-directional image resampling method is pro-
posed. The method uses a weighted sum of two adaptive 4x4
interpolation kernels to construct high-resolution pixels. The
weights are chosen according to the local gradient features for
each pixel. The interpolation kernels are learned using pairs
of low- and high-resolution images taken from LIVE image
database. The method has low complexity and low memory
consumption. It outperforms existing fast edge-directional
image interpolation methods.

Index Terms— Fast image resampling, edge-directional
interpolation

1. INTRODUCTION

Fast and high quality methods of image upscaling are used in
a large area of image processing applications. It is especially
important for showing low-resolution content in modern high
definition television. Super-resolution algorithms with a mag-
nification factor of 2 are demanded as a base of arbitrary fac-
tor magnification methods.

The simplest algorithms are general purpose linear inter-
polation methods like bilinear, bicubic, and Lanczos interpo-
lation [1]. They are fast but do not perform edge-directed
interpolation.

The more complicated edge-directional image interpo-
lation algorithms use prior information about images. The
method [2] improves linear interpolation by kernel elonga-
tion along edges. This approach produces excellent results at
straight edges but fails at image corners and textured areas.
NEDI [3] algorithm uses self-similarity of the natural images
at different scales. It works well at edges and corners but may
corrupt image textures. Edge-guided image interpolation
(EGII) [4], Iterative curvature-based interpolation (ICBI) [5]
and Directional cubic convolution interpolation (DCCI) [6]
algorithms combine the interpolation by two directions at
each pixel. The coefficients of the combination are chosen
according to the local direction features.

Regularization-based algorithms pose the image upscal-
ing problem as a functional minimization problem with data-

fitting and stabilizer terms [7, 8]. The stabilizer holds prior
information about the image. Usually used total variation sta-
bilizer smooths the image while keeping edges sharp. The
functional minimization problem is computationally very ex-
pensive.

Learning-based algorithms use a dictionary containing
pairs of low-resolution and corresponding high-resolution
image patches. State-of-the-art algorithms use convolutional
neural networks [9]. They produce excellent results but are
very slow due to a large number of convolutions. Adaptive re-
gression algorithms classify each pixel into a class and apply
linear transform to construct a high-resolution patch [10, 11].

In this paper, we present a new low complexity im-
age resampling algorithm based on the ideas of DCCI and
regression-based algorithms.

2. THE PROPOSED ALGORITHM

The proposed algorithm is based on DCCI algorithm [6]. The
main idea of DCCI is the interpolation procedure that takes a
4×4 pixel block as the input and interpolates the central pixel
of the block. The upscaling the a factor of 2 is achieved by
applying the interpolation procedure twice: the second time it
is applied with 45◦ rotation (see Figures 1, 2 and 3).

We have made the following improvements to the DCCI
algorithm:

1. Adaptive 4x4 kernel is used instead of fixed cubic in-
terpolation using only 4 pixels.

2. An adaptive sharpening is applied before image inter-
polation to reduce the blur introduced by anti-aliasing filtering
during producing the low-resolution image.

Let ui,j be the input low-resolution image, vi,j — the re-
constructed high-resolution image.

The method consists of three steps and uses interpolation
kernels A, B and C that are obtained from a learning process
(see section 2.4).

2.1. First step

To avoid aliasing effect during image downsampling, blur
operator is usually applied to the high-resolution image. It



means that there is no direct correspondence between pixels
of low- and high-resolution images.

At the first step, we apply adaptive deblurring operator to
the low-resolution image to compensate blur introduced dur-
ing downsampling process:

v2i,2j = (u ∗A)i,j , (1)

where A is 5× 5 filter.

2.2. Second step

At the second step, pixels with odd coordinates v2i+1,2j+1

are interpolated by 4 × 4 block of surrounding pixels of the
low-resolution image (see Fig. 1).

Fig. 1. Interpolation of pixels with odd coordinates at the sec-
ond step. Blue pixels are pixels of the low-resolution image.
The green pixel is the interpolated pixel of the high-resolution
image.

Fig. 2. Calculation of the directional power at the interpolated
pixel at the second step as the sum of absolute differences
represented by diagonal lines.

First, the directional power values for 45◦ and 135◦ diag-
onals are calculated. The directional power value is equal to

the sum of absolute differences in 3x3 block (see Fig. 2):

p2i+1,2j+1 =

2∑
n,m=0

|ui+n,j+m − ui+n−1,j+m−1|,

q2i+1,2j+1 =

2∑
n,m=0

|ui+n−1,j+m − ui+n,j+m−1|.

Next, the directional weight coefficient is calculated:

w2i+1,2j+1 =
1 + pk2i+1,2j+1

2 + pk2i+1,2j+1 + qk2i+1,2j+1

.

Parameter k is chosen experimentally, good results are ob-
tained with k = 6 [6].

The weight coefficient is close to either 0 or 1 if the image
content is strongly oriented and close to 1/2 if there is no
prevalent direction.

Finally, the high-resolution pixels are interpolated:

v2i+1,2j+1 = w2i+1,2j+1(u ∗B)i,j+

+ (1− w2i+1,2j+1)(u ∗B′)i,j ,
(2)

where B and B′ are 4 × 4 interpolation kernels for 45◦ and
135◦ respectively.

2.3. Third step

At the third step, the rest of pixels are interpolated. The pro-
cedure is similar to the second step but the image is 45◦ ro-
tated (see Fig. 3). Previously interpolated pixels of the high-
resolution image calculated at the first two steps are used.

Fig. 3. Interpolation of pixels at the third step.

The direction power values and interpolated pixels are cal-
culated as follows:



pi,j =

2∑
n,m=0

|vi+n−m,j+n+m−1 − vi+n−m,j+n+m−3|,

qi,j =

2∑
n,m=0

|vi+n+m−1,j+n−m − vi+n+m−3,j+n−m|,

wi,j =
1 + pki,j

2 + pki,j + qki,j
,

vi,j = wi,j(u ∗ C)i,j + (1− wi,j)(u ∗ C ′)i,j ,

where C and C ′ are 4×4 interpolation kernels for 0◦ and 90◦

respectively.

2.4. Learning interpolation kernels

The interpolation kernels are learned using pairs of corre-
sponding low- and high-resolution images by minimizing the
square error sum. Assuming u and v are known images, we
find the coefficients A such that∑

i,j

((u ∗A)i,j − v2i,2j)2 → min. (3)

In the case of several training image pairs, we minimize
the sum for all the images. This quadratic minimization prob-
lem leads to a system of linear equations that is solved triv-
ially. The coefficients of B and C are found in the same way.

To reduce the number of independent coefficients in the
interpolation kernels, we restrict the proposed algorithm to be
invariant to image rotation, mirroring and transposition:

A =


A1 A2 A3 A2 A1

A2 A4 A5 A4 A2

A3 A5 A6 A5 A3

A2 A4 A5 A4 A2

A1 A2 A3 A2 A1

 ,

B =


B1 B2 B3 B4

B2 B5 B6 B3

B3 B6 B5 B2

B4 B3 B2 B1

 , B′ =

B4 B3 B2 B1

B3 B6 B5 B2

B2 B5 B6 B3

B1 B2 B3 B4

 ,

C =



C1

C2 C2

C3 C5 C3

C4 C6 C6 C4

C3 C5 C3

C2 C2

C1


,

C ′ =



C4

C3 C3

C2 C6 C2

C1 C5 C5 C1

C2 C6 C2

C3 C3

C4


.

In this case, the number of independent coefficients of ker-
nel A is equal to 6 (instead of 25), for pair of kernels B and
B′ is equal to 6 and for pair of kernels C and C ′ is equal to 6
too. It means that a total of 18 coefficients should be obtained.

The proposed algorithm was trained using 29 reference
images from LIVE database [12,13] containing photographic
images of nature, humans and buildings. The reference im-
ages were downsampled by 2 times using Gauss filtering with
σ = 0.4 followed by taking every second pixel.

The obtained coefficients of the kernels are the following:

A = (−0.00063,−0.00180, 0.02694,
0.01716,−0.15097, 1.45306),

B = (0.03297,−0.04665,−0.04484,
−0.05382, 0.12650, 0.58139),

C = (0.04283,−0.05838,−0.04952,
−0.03016, 0.25095, 0.45204).

3. RESULTS

The proposed algorithm was compared with existing image
resampling algorithms of the same computational complexity
(image processing time). The main competitors are DCCI [6]
and SI [11]. DCCI algorithm uses fixed one-dimensional cu-
bic interpolation instead of adaptive 4x4 kernels. The algo-
rithm SI uses linear mapping from low-resolution patches into
2x2 blocks in the high-resolution image. The authors propose
3 modifications: 3x3 to 2x2 (SI-1), 5x5 to 2x2 (SI-2) and 7x7
to 2x2 (SI-3) mappings. We compare with SI-1 method only
because SI-2 and SI-3 are slower than the proposed method.
The algorithm SI-1 has been trained using the same training
image set as the proposed method.

The results for the factor of 2 are shown in Table 1, Ta-
ble 2, Fig. 4 and Fig. 5. We have used the same downsampling
routine to generate the low-resolution images as for the train-
ing stage.

Bicubic DCCI [6] SI-1 [11] Proposed
Baboon 23.850 23.909 24.179 24.183
Cameraman 25.934 26.315 27.183 26.667
Lena 34.076 34.462 35.041 35.243
Peppers 33.595 33.927 34.676 34.366
Average 29.364 29.653 30.270 30.115

Table 1. Comparison of the proposed method with existing
image resampling algorithms (PSNR)

It can be seen that SI-1 has slightly better PSNR and SSIM
values for some images but has unwanted 2x2 blocking arti-
facts at flat areas with gradual intensity change (see Fig. 4 and
Fig. 5). This is caused by influence of thresholding in map-
ping class selection: small changes result in using different
mapping class.



Bicubic DCCI SI-1 Proposed
Baboon 0.804 0.805 0.832 0.834
Cameraman 0.906 0.909 0.926 0.919
Lena 0.952 0.953 0.959 0.958
Peppers 0.940 0.940 0.946 0.944
Average 0.900 0.902 0.916 0.914

Table 2. Comparison of the proposed method with existing
image resampling algorithms (SSIM)

It takes about 15 ms to perform 512×512→ 1024×1024
upsampling of color image on Intel Core i7 2600K CPU that
is about 1.5× slower than DCCI and is equal to SI-1 algo-
rithm. The SRCNN algorithm takes several seconds to pro-
cess the image.

Although the proposed method has practically the same
performance and quality as SI-1, it has an advantage over SI-1
in memory consumption. The proposed method requires only
a few bytes of additional memory to store the coefficients of
interpolation kernels while SI-1 needs to store hundreds of in-
terpolation kernels. It makes possible the proposed algorithm
to be implemented on chip.

The computation complexity is the following. For the in-
put 4× 4 grayscale pixel block returning single pixel, it takes
60 additions and subtractions, 18 multiplications, 1 division
and 18 logical operations. It can be optimized by reusing
the values of directional derivatives when processing adjacent
blocks up to 44 additions and subtractions, 18 multiplications,
1 division and 2 logical operations.

The software implementation of the proposed algorithm
and our implementations of SI-1 and DCCI are available at
the site http://imaging.cs.msu.ru/software.

4. CONCLUSION

A fast edge-directional image resampling algorithm has
been proposed. In comparison with existing image resam-
pling algorithms with the same computational complexity,
the proposed method shows good objective quality and has
low memory consumption. The advantage of the proposed
method over DCCI algorithm has been obtained using adap-
tive 4x4 kernel instead of cubic interpolation and filtering of
pixels of the low-resolution image.

The future work will include an adaptation of the pro-
posed algorithm for fast video resampling.

The work was supported by Russian Science Foundation
grant 14-11-00308.
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Fig. 4. Comparison of the proposed method with existing
image resampling algorithms (lena)

Bicubic

DCCI [6]

SI-1 [11]

Proposed

Fig. 5. Comparison of the proposed method with existing
image resampling algorithms (cameraman).


