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ABSTRACT

A new method for image sharpening via image warping is
proposed. The idea of the method is to warp the uniform grid
of the image in a way that the pixels around the blurred edge
move closer to the edge according to its blurriness. The ad-
vantage of the proposed method is that instead of an accurate
estimation of the blur kernel only approximate value of the
edge blur level is required. Also, since image warping does
not change pixel values and only moves pixels, the developed
method does not increase the noise level. The proposed tech-
nique preserves the overall luminosity and textures of the im-
age, while making the edges sharper and less noisy.

Index Terms— Image warping, sharpening, deblurring,
edge width

1. INTRODUCTION

Image sharpening is generally viewed as the problem of im-
age deconvolution [1]. In this case the blurred image is usu-
ally modeled as a convolution of the original image with some
blur kernel [2], [3]. This problem is ill-posed, and even the
slightest error in the estimation of the blur kernel may intro-
duce strong artifacts in the resulting image.

In this work we propose another image sharpening ap-
proach. Instead of accurately estimating the blur kernel of
the whole image and performing deconvolution, we warp the
uniform grid of the image so that pixels in the neighborhood
of the blurred edge move closer to the edge.

Warping approach for image enhancement had been in-
troduced in [4]. The grid warping is performed according to
the solution of a differential equation that is derived from the
warping process constraints. The solution of the equation is
used to shift edge neighborhood pixels closer to the edge, and
the areas between edges are stretched. The drawback of this
method is in its global nature: it is applied to the whole image,
which may lead to the distortion of the edges.

In [5] the warping map is computed using simple local
measures of the image. The measures are computed sepa-
rately for rows and for columns of the image with restrictions
that prevent two consecutive samples from interchanging their

order in the 1D sequence. This approach does not introduce
edge overshoot and does not amplify the noise, but it can in-
troduce small local changes in the direction of edges.

In [6] a method is proposed that preserves the contours
during enlargement, the method combines the warping of the
coordinate point with the biasing of the signal amplitude.

The warping approach is close to the morphology-based
sharpening [7] and shock filters [8, 9, 10] and has the follow-
ing advantages over them: the proposed method is applied to
edges locally so the textures are preserved, also warping does
not make the image piecewise constant. The method is com-
putationally efficient.

The method proposed in this work requires the approx-
imate knowledge of the blur level of the image. In [11] an
edge width estimation algorithm has been introduced. The
method is based on the assumption that the blur of the image
is close to Gaussian. The image is divided into blocks, and
the blur kernel is supposed to be uniform inside the block.
The estimation of the blurriness of the block is based on the
maximum of difference ratio between an original image and
its two re-blurred versions.

In this work we also propose an edge width estimation
method that works under the same assumption that the blur
of the image is close to the Gaussian blur. We accurately
estimate the standard deviation of the Gaussian kernel such
that its convolution with the ideal step edge function gives the
edge of interest.

2. ONE-DIMENSIONAL GRID WARPING

The idea of one-dimensional edge sharpening is based on the
assumption that the edge can be approximated by a step-edge
function H(x) smoothed with a Gaussian kernel with a stan-
dard deviation σ [12]:

H(x) =

{
1, x ≥ 0,

0, x < 0,

Eσ(x) = [H ∗Gσ](x). (1)



The aim of the proposed method is to transform edge
points coordinates in such a way that the slope of the edge
becomes steeper (see Fig. 1).

a. Proposed approach: b. Typical deblurring approach:
pixels are shifted pixel values are modified

Fig. 1. The idea of one-dimensional edge sharpening

2.1. A physical model for grid warping

In the case of a continuous Gaussian edge (1) we redistribute
the x-axis values according to the following physical model
(see Fig. 2): let us assume that each point x of the edge is a
particle with mass m situated on the edge slope Eσ(x). The
particle x is connected to its position via a spring with the co-
efficient of elasticity k. The end of the spring can move freely
along y-axis at the point x and the spring always remains hor-
izontal. The length of the spring in relaxed state is 0. Due to
the force of gravity the spring is deformed until the particle
reaches equilibrium. The new position x̃(x) now corresponds
to the edge intensity I(x) (see Fig. 1).

This model ensures that the shape of the edge is not dis-
torted and the grid transformation is smooth.

Fig. 2. Physical model for 1D edge sharpening

The described physical model leads to the following equa-
tion for equilibrium at the point x̃(x) along the tangent line τ :

k~x sinα+m~g cosα = 0.

The angle α depends on the position x̃, α = α(x̃). The
displacement along x-axis is

∆x = x− x̃.

Thus, the displacement along the tangent line τ equals

∆x =
mg

k
cotα.

The value mg
k is constant for each particle, so it is denoted

mg
k = A.

Parameter A > 0 is responsible for the strength of grid
warping. Thus, the equation for the new position of the parti-
cle is

x− x̃ = A cotα(x̃). (2)

The dependence of the angle α = α(x̃) is obtained from
the equation of tangent:

tanφ = E′
σ(x̃) = [H ∗G′

σ](x̃) = G′
σ(x̃),

α = φ− π

2
⇒ tanφ = tan (

π

2
+ α) = − cotα.

Thus, the main equation for one-dimensional grid warp-
ing (2) takes the following form:

x̃− x = AG′
σ(x̃). (3)

2.2. Theoretical constraints on the strength parameter A

In order to make the result of edge warping continuous, the
equation (3) should give one-to-one correspondence between
x and x̃. The equation (3) is symmetric about the origin,
which gives us the opportunity to work only with the case
of x ≥ 0:

−x̃−(−x) = AG′
σ(−x̃)⇒ x̃−x = −AG′

σ(−x̃) = AG′
σ(x̃).

Fig. 3. Graphical solution of the warp equation. Red curve
represents the right part of the equation, blue lines represent
the left part of the equation depending on parameter x.

While solving the warp equation (3) with unknown x̃, in
the case of multiple solutions the one closest to zero is taken
as a new coordinate for point x (see Fig. 3).

Let us consider x = x0 such that the line l0 : y = x̃− x0
is tangential to the graph of the function y = AG′

σ(x̃) in the
point of intersection x̃0 closest to 0. The equation of a tangent
line at the point x̃0 takes the following form:

l0 : y = AG′′
σ(x̃0)(x̃− x̃0) +AG′

σ(x̃0) =

= AG′′
σ(x̃0) · x̃+ (AG′

σ(x̃0)−AG′′
σ(x̃0) · x̃0).

This leads to the following:



AG′′
σ(x̃0) · x̃+ (AG′

σ(x̃0)−AG′′
σ(x̃0) · x̃0) ≡ x̃− x0 ⇒

⇒ AG′′
σ(x̃0) = 1.

The equation AG′′
σ(x) = 1 either

a. has no solution, in this case the warp equation (3) has a
single solution x̃ for all x (see Fig. 4a),

or b. has a solution x̃0, which leads to a discontinuity in
the solution of the warp equation (3) at x0 (see Fig. 4b).

a. continuous b. discontinuous

Fig. 4. Warp equation solution. The X axis represents the
original pixel coordinates while the Y axis — the pixel coor-
dinates after warping

The above consideration gives us the following con-
straints on the strength parameter A: in order to have a
continuous solution of the warp equation (3), the strength
parameter A should be such that

A <
1

max
x∈<

G′′
σ(x)

.

We use A = 0.99 · 1
max
x∈<

G′′
σ(x)

in order to get a strong

sharpening effect.

3. 2D EXTENSION

The following algorithm has been developed for warping the
grid of the 2D images in the neighborhood of the previously
detected edges:
1. Estimate the blur level (the average standard deviation of
Gaussian filter) for the edges.
2. For all pixels in the neighborhood of the edge compute the
distance to the nearest edge point.
3. Compute vector field of displacements based on found dis-
tances (see Fig. 5).
4. Interpolate the image from the warped grid to the old uni-
form grid.

In our work we use the result of Canny edge detection [13]
as the input of the algorithm. The result of image warping is
highly dependent on the input edges and it is very important
to perform the edge detection carefully. The parameters of
the Canny method (σ and high threshold Thigh) are chosen
individually for each image.

Fig. 5. Displacements for two-dimensional grid warping. The
thick line represents the exact edge location, white circles
represent edge pixels, black circles represent pixels from the
edge neighborhood

3.1. The edge blur level estimation

We perform the estimation of the blur level of the detected
edges E = {ei}N1 for the image I . We assume that the edge
width remains the same for the entire edge.

For each edge ei we find a point pi belonging to this edge
with the maximum gradient magnitude:

pi ∈ ei : |grad(I(pi))| = max
p∈ei
|grad(I(p))|.

At the point pi we compute the edge profile P (pi): we
interpolate the image in the direction of the image gradient at
this point. Then for the one-dimensional edge profile P (pi)
we analyze its width wi using the algorithm proposed in [12],
[14] based on unsharp masking technique, where unsharp
masking of a signal I is defined as:

Uσ,α[I] = (1 + α)I − αI ∗Gσ.

1. Given values: α, UE , 1-dimensional edge profile
Eσ0

(x).
2. for σ = σmin to σmax step σstep

compute Uσ,α[Eσ0 ](x),
find local maxima xmaxσ of Uσ,α[Eσ0 ](x),
if Uσ,α[Eσ0

](xmaxσ ) ≥ UE
result = σ,
stop cycle.

3. Output: result.
In this work we use the following values: α = 4, UE =

1.24, σmin = 0.5, σmax = 10, σstep = 0.1.
For all found edge widths {σi}N1 we take the median edge

width σmed and consider the image I to be blurred with a
Gaussian kernel with standard deviation σmed: I = Isharp ∗
Gσmed .

3.2. Distance transform to the nearest edge points

We use the set of points M in the neighborhood of the edges
E such that the distance from each point of M does not ex-
ceed 3 · wmed: M = {p : d(p,E) ≤ 3 · wmed}. The value of
the proposed radius is due to the fact that 99% of information
of the Gaussian kernel of standard deviation σ is located in
the interval [−3σ, 3σ].



For each point p ofM we compute the Euclidean distance
d to the nearest edge point.

3.3. Vector field of displacements

The image I is considered to be defined on a uniform grid
with each pixel having a coordinate (x, y). The idea of 2D
grid warping is to find such a vector of displacement ~v =
{∆x,∆y} for each coordinate (x, y) that the new coordinate
(x + ∆x, y + ∆y) becomes closer to the edge in terms of
Euclidean distance.

For each point p in the neighborhood of the edges with
distance d to the nearest edge point e we solve the warp equa-
tion (3) with x ≡ d. The solution x̃ gives the new distance
d̃ to the edge point e, and the magnitude of the displacement
vector ~v equals |~v| = d− d̃. Also, the vector of displacement
~v is parallel to the direction of the image gradient at the point
e and is directed towards e. For the points not from the neigh-
borhood of the edges we consider the vector of displacement
to be zero.

3.4. Image interpolation

The idea of interpolation from the warped grid to the uniform
grid is as follows: the intensity of the image at pixel (i, j) is
computed as a weighted sum of intensities of all points on the
warped grid in the neighborhood of that pixel (see Fig. 6c):
for a given radius r and all neighboring points {(xk, yk) :
dk =

√
(i− xk)2 + (j − yk)2 ≤ r}Kk=1 the intensity of a

sharpened image Is at (i, j) is computed as

Is(i, j) =

K∑
k=1

1

D k
I(xk, yk),

where Dk = dk
K∑
l=1

dl

.

a. displacements b. warped grid c. interpolation

Fig. 6. Grid warping and interpolation

We use the interpolation radius r = 1.5.

4. RESULTS

The proposed method was tested on 29 images from LIVE
database [15]. Two levels of degradation were considered.

Reference image Blurred image

Level 1 (Blurred and noisy) Level 2 (+ motion blur)

Fig. 7. Example of input images

The first degradation level contains the reference images
blurred with Gauss blur with random radius in range [1, 6].
Gaussian white noise with random standard deviation in
range [0, 10] was added. In the second level, the Gauss filter
radius was multiplied by 0.6, noise level was doubled and
random motion blur was added. The PSF of motion blur was
modeled as a set of coordinates of a randomly moving point.
The point had initial moving vector randomized in [−0.2, 0.2]
range that was changed at every iteration by random value in
[−0.1, 0.1] range, 30 iterations were taken. An example of
input images is shown in Fig. 7.

The proposed method was compared to common image
deblurring algorithms. The image warping was applied both
to degraded image and as post-processing algorithm for image
deblurring algorithms. The results are shown in Fig. 8 and
Table 1.

It can be seen that the proposed technique makes the edges
sharper and less noisy while keeping image textures almost
intact. The developed image warping method also improves
the results of other image deblurring methods. In comparison
to other methods, the proposed method shows better results in
hard cases, for example, in the presence of noise or when an
accurate estimation of PSF is not available.

The results of the proposed method for real images is
shown in Fig 9.

The edge map at the input of the algorithm has a great
influence on the result of grid warping because only detected
edges will be sharpened. In our work we use Canny edge
map. As illustrated in Fig. 9, the method works best for strong



Reference image Blurred and noise image

Blind deconvolution Unsharp mask (σ = 4, α = 2)

TV regularization Low frequency TV reg [16]

TVMM [2] Lucy-Richardson

Wiener filter [17] Proposed method

Wiener filter + proposed LF TV reg + proposed

Fig. 8. Results of deblurring of blurred and noisy images

Direct Post-processing
Method Level 1 Level 2 Level 1 Level 2
Blurred and noisy images 22.84 21.77 — —
Unsharp masking 23.00 20.87 23.54 21.55
TV regularization 23.30 20.72 23.35 20.98
Low-frequency TV reg. [16] 23.08 21.64 23.15 21.78
TVMM [2] 23.31 21.50 23.33 21.54
Lucy-Richardson [17] 23.83 21.27 23.94 21.58
Wiener [17] 24.00 21.94 24.08 22.01
MatLab blind deconvolution 23.79 20.98 23.93 21.44
Proposed 23.29 22.14 23.29 22.14

Table 1. Average PSNR values for the blurred and noisy im-
ages from LIVE database

Real blurred and noisy image The result of LF TV reg [16]

The proposed method

Fig. 9. The result of image warping for real image



edges. The warping effect is non-perceptible for short edges,
and the performance of the algorithm depends on the amount
of edges, so it is better to process only isolated strong edges
like basic edges [18]. Also the sharpening effect may be re-
duced if there are two or more edges closely situated, so the
method will not work very well for some textures.

At the current stage the sharpening of 512x512 Lena im-
age with selected 140 edge segments takes as an example
about half a second to be processed on computer with 2GHz
Intel Core i5 processor. Meanwhile the proposed algorithm
can be effectively parallelized in order to improve its perfor-
mance.

5. CONCLUSION

A method for image sharpening using image warping has
been developed. The results show the effectiveness of the
proposed method in the case of noisy images with inaccu-
rately estimated blur kernels that is usual when deblurring
real images. The method does not produce artifacts like
ringing and noise amplification. The proposed method is
effective as post-processing for edge sharpening in combi-
nation with other image deblurring methods. The developed
warping method can be easily extended to the problem of
image resampling with edge sharpness control.

The work was supported by Russian Science Foundation
grant 14-11-00308.
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