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The paper presents a new adaptive full reference method for quality measurement of 

image enhancement algorithms. The method is based on the analysis of basic edges 

— sharp edges which are distant from another edges. The proposed basic edges 

metrics calculates error values in two areas related to typical artifacts of image 

enhancement algorithms: basic edges area and basic edges neighborhood. The 

metrics are illustrated with an application to image resampling and image deblurring 

but it is also applicable for image deringing and image denoising. 
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Introduction 

Development of image metrics is important for the objective analysis of image 

resampling, deringing, deblurring, denoising and other image enhancement algorithms. Common 

scheme to estimate the quality of an image enhancement algorithm uses a set of artifact free 
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reference images. These images are corrupted to simulate the effect which is aimed to be 

suppressed by the being analyzed image enhancement algorithm. Then the corrupted images are 

restored using the given algorithm and compared to the corresponding reference images using 

image metrics. 

There exist large variety of image metrics [1] ranging from simple but fast approaches 

like MSE, PSNR to more sophisticated metrics based on the modeling of the human visual 

system [2]. 

There also exist no-reference quality estimation algorithms that measure specific artifacts 

like blur [3] and ringing [4] for certain image restoration algorithms. 

Most of image metrics can provide an estimation of perceptual image quality but they 

cannot be used to develop effective image enhancement algorithms. Two image enhancement 

algorithms can give the same metrics values but the results can be very different if the first 

algorithm processes edges well and corrupts non-edge area while the second one corrupts only 

edges. Such an example for image deblurring is shown in Fig.1. 

   

a) Blurred image b) Results of different image deblurring algorithms 

Fig. 1. Application of the unsharp mask with different amount parameter to noisy blurred image. 

PSNR values are the same, but the edges are sharper in the left result image while non-edge area 

is better in the right image. 

 

Typical artifacts of image enhancement algorithms are blur and ringing effect near sharp 

edges. The origin of these artifacts is the loss of the high frequency information during image 



corruption and inaccurate reconstruction of the high frequency information by image 

enhancement algorithms. Using parameters of image corruption and image enhancement method, 

it is possible to find the areas related to these artifacts and to calculate image quality metrics in 

these areas separately. This information can be helpful to find the most problem areas of a 

certain image enhancement algorithm. 

In this paper, we develop a method to find the areas related to two typical image artifacts: 

edge blur and ringing effect. An algorithm to find the area related to ringing effect is proposed in 

[5], but this algorithm has limitations and cannot be applied for most of image enhancement 

algorithms. Our proposed method is based on the concept of basic edges — sharp edges which 

are distant from other edges thus surviving after image corruption. The perceptual metrics for 

these areas are suggested. 

The proposed metrics estimate the quality of different image enhancement methods by 

analyzing the image quality in the areas of blur and ringing effect. Image degradation type and 

its parameters are supposed to be known. 

In section 1, we analyze blur and ringing effect for image enhancement of low-resolution 

images, blurred images and images with ringing effect. In section 2, we find the edges suitable 

for image quality estimation. In section 3, we introduce our metrics to estimate the quality of 

image enhancement methods. Application of the proposed metrics to image resampling and 

image deblurring is shown in section 4. 

 

1. Artifact analysis 

Since both blur and ringing effect are the results of the loss of high frequency 

information, these effects should be considered together. If all frequencies above 
p2

1
 Hz are 

truncated in Fourier transform, ringing oscillations appear and edges are blurred. The length of 

single ringing oscillation and edge width are equal to p  pixels. The example of high frequency 



truncation is shown in Fig. 2. Although the number of ringing oscillations is unlimited for the 

high frequency cut off, usually no more than 1–2 oscillations are noticeable. 

We will call parameter p  as the cut off parameter. 

 

 

Original image 

 

After high frequency information cut off 

 

Edge profiles: 

  

2D Fourier transform modulus: 



  

Fig. 2. Appearing of blur and ringing effect after high frequency information cut off for p = 4. 

 

In practice, the high frequency information is usually corrupted but not completely 

absent, and the cut off frequency cannot be obtained directly from Fourier transform. In this case 

additional investigations are required to estimate blur and ringing effect parameter. 

We can also predict the parameter’s value from the image degradation type a priori. 

Low-resolution images are constructed using downsampling procedure which includes 

low-pass antialiasing filtering followed by the decimation procedure. During the decimation with 

scale factor s , the frequencies greater than 
s2

1
 are discarded. The cut off is not ideal because of 

the two-dimensionality of the image. For any linear image resampling method producing blur 

and ringing effect, the parameter p depends only on scale factor s  and sp  . For non-linear 

image resampling methods we use sp   too. 

In image deringing the parameter p  is already known from the definition of the problem. 

Blurred images are the results of low-pass filtering followed by a noise addition. We 

consider Gaussian blur with known radius   and a noise with Gaussian distribution. There is no 

frequency cut off, and parameter p depends on image deblurring method. For the unsharp mask, 

we use kp  , where 35.2  k . 



We have performed frequency analysis of different image enhancement algorithms to 

confirm the preposition that parameter p can be estimated from image degradation method. For a 

pair of reference image v and restored image u we calculate the cumulative spectrum error 

function )(wA  (CSEF): 
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where ),( 21 wwf  is linearly interpolated discrete Fourier transform of the error image vuf  . 

The analysis consists in calculating average CSEFs )(wA  for reference images from the 

set of standard images (baboon, cameraman, house, goldhill, lena, peppers) for popular methods 

of image resampling, deringing and deblurring. The results of this analysis for p = 2 are shown in 

Fig. 3. It can be seen that most of the image enhancement methods produce error in high-

frequency domain and the change of the curve shape happens in the expected point 
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Fig. 3. Cumulative spectrum error functions differences for different image corruption and 

enhancement methods. 

 

2. Basic edges 



Blur and ringing effect appears near sharp edges. But an arbitrary sharp edge cannot be 

used for image quality analysis. Some edges can disappear or can be displaced after image 

corruption. If these edges are used to analyze blur and ringing effect, the results will be incorrect. 

There are two effects observed in images with corrupted high frequency information: 

1. Masking effect. If an edge with low gradient value is located near an edge with high 

gradient value, it will disappear after image degradation. 

2. Edge displacement. If two edges with the same or close gradient values are located 

near each other, they will be displaced after image degradation. 

These effects are illustrated in fig. 4 for image blur. 

  

  

  

Fig. 4. The effects of edge masking and edge displacement for image blurring. Left: original 

edge profiles; right: gradient values with marked local maxima. Top row: low blur; middle: 

medium blur; bottom: strong blur. 

Therefore, in our algorithm we find edges in the reference image which satisfy the 

following conditions: 

1. An edge point is not masked by nearby edges: 
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where jig ,  is the gradient modulus, function )(t  is the mask function. We use 
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2. The distance from the edge point to the nearest edge is greater than a threshold R. This 

operation is performed using mathematical morphology [6]. We use pR 3 . 

3. The gradient modulus jig ,  is greater than a threshold 0g . The condition is used to 

reduce the influence of noise on blur and ringing effect. 

We call the edges passed the first condition as non-masked edges and the edges passed all 

these conditions as basic edges. The basic edges persist after image degradation following by 

reconstruction with cut off parameter less than p. 

 

3. Image quality metrics 

After detection of basic edges, we calculate two sets: 

1. The set 1M  containing all pixels for which the nearest non-masked edge is a basic edge 

and the distance to this edge is less or equal than p2 . Blur effect is the most likely to appear in 

this set. 

2. The set 2M  containing all pixels for which the nearest non-masked edge is a basic 

edge and the distance to this edge is greater than 
2

p
 and less or equal than p2 . Ringing effect is 

the most likely to appear in this set. 

The example of finding these sets is shown in Fig. 5. 

 



 

 

Original image. 

 

White edges are the edges passed the condition 

(1), dark gray edges— not passed. 

  

White points are points of basic edges, dark 

lines are non-masked non-basic edges. 

White area is the set 1M , 

gray area is the set 2M . 

Fig. 5. The result of basic edges detection for 4p . 

 

To measure image quality, we calculate metrics values in the sets 1M  and 2M  using 

SSIM [7]: 
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where u  and v  are the means of u and v respectively, 2

u  and 2

v  are the variances, uv  is 

the covariance of u and v, 2

1 )01.0( Lc  , 2

2 )03.0( Lc  , L is the dynamic range of pixel values 

(typically this is L = 255). The values u , v , 2

u , 2

v  and uv  are calculated only in the set M. 



Finally we introduce the image quality value vector for image u with ground truth image 

v and given cut off parameter p: 
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where ),(0 vuSSIM  , );,( 11 MvuSSIM  , );,( 22 MvuSSIM  . The value 0  is calculated in 

the entire image. 

 

4. Results 

The problem of optimal constructing of a combination of image enhancement algorithms 

was used to justify the effectiveness of the proposed metrics. 

Consider the results of two image enhancement algorithms, where the first result  u  

shows bad 1  but good 2  while the second one v  has good 1  and bad 2 . It is natural to take 

linear combination of these methods to improve the result 
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where jid ,  is the distance to the nearest non-masked edge from the pixel ),( ji , )(da is the 

weight coefficient depending on the distance jid , . 

We use the following )(da  function: 
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The result for combination of unsharp mask and regularized total variation (TV) 

deconvolution in low-frequency domain [8] for the problem of image deblurring is shown in 

Fig. 6. The unsharp mask algorithm performs high frequency amplification 
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where H  is the Gaussian filter with   same as was used for image blur,   is the amplification 

parameter. 

The idea of the regularized total variation deconvolution in low-frequency domain is to 

take the low-frequency part of the blurred image Hu , perform its sharpening using unsharp 

mask with high parameter   (we use 5 ) and then project the result into the set of bounded 

total variation and add the high-frequency information without amplification: 
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For the problem of image resampling, we construct the combined image for bilinear and 

ideal (sinc) interpolation algorithms. The results are shown in Fig. 7. It can be seen that ringing 

effect is suppressed while the edges remain sharp. 

 



 

 

Reference image. 

 

Blurred )3(   and noisy observation. 

9749.0,8168.0,9828.0 210   . 

 

Regularized deconvolution [8]. 

9754.0,9520.0,9844.0 210   . 

 

Unsharp mask with 2 . 

9852.0,8791.0,9833.0 210   . 

 

Combined method. 

9901.0,9409.0,9889.0 210   . 

Fig. 6. Application of the proposed metrics to improve the results of deblurring methods. 

 



 

Reference image. 

 

 

 

 

Low resolution image. 

 

Sinc interpolation. 

9958.0,9708.0,9848.0 210   . 

 

Bilinear interpolation. 

9962.0,9665.0,9837.0 210   . 

 

Combined method. 

9962.0,9708.0,9851.0 210   . 

Fig. 7. Application of the proposed metrics to improve the results of image resampling 

algorithms. 

 



Conclusion 

New full-reference metrics for quality measurement of image enhancement algorithms 

based on the analysis of typical artifacts of image enhancements methods have been developed. 

These metrics were approbated on image resampling and image deblurring. It looks promising 

for combining two different image enhancement algorithms to obtain better result. 
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