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Abstract. Keypoints detection and descriptors construction method
based on multiscale Laguerre-Gauss circular harmonic functions expan-
sions is considered. Its efficient acceleration procedure is introduced.
Two acceleration ideas are used. The first idea is based on the inter-
connection between Laguerre-Gauss circular harmonic functions system
and 2D Hermite functions system. The further acceleration is based on
the original fast Hermite projection method. The comparison tests with
SIFT algorithm were performed. The proposed method can be addition-
ally enhanced and optimized. Nevertheless even preliminary investigation
showed promising results.
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1 Introduction

The images keypoints extraction is one of the basic problems of low level image
processing. Keypoints detection and parametrization is the initial step in tasks
like stereo matching [1], object recognition [2], video indexing [3], panorama
building and others. There are many approaches to the keypoints detection prob-
lem such as Harris corner detector [4], DoG approach presented by Lowe [5], the
approach based on circular harmonic functions theory [6], [7], etc. The problem
of keypoints descriptor construction is also widely presented in literature [4],
[5], [8]. The invariance to a class of projective and photometric transformations
is the target property of the descriptor construction algorithm. This property
is crucial to obtain high matching rate across multiple views. As the majority
of keypoints descriptors construction algorithms are computationally expensive,
development of efficient computation algorithms becomes actual.

In this paper the keypoints detection and descriptors construction multiscale
approach based on Gauss-Laguerre circular harmonic functions [6] is considered.
The 2D Hermite projection-based fast algorithm for efficient exact keypoints



2 Dmitry Sorokin, Maxim Mizotin, Andrey Krylov

descriptors computation is proposed. The structure of the paper is the following:
the first section is devoted to the Gauss-Laguerre keypoints extraction and its
Hermite projection method acceleration, in the second section the fast Hermite
projection method is considered and test results are described in the last section.

2 Gauss-Laguerre Keypoints

2.1 Gauss-Laguerre keypoints detection

Let us consider a family of complex orthonormal and polar separable functions:

Ψ(r, γ;σ) = ψ|α|n (r2/σ)eiαγ .

Their radial profiles are Laguerre functions:

ψ|α|n (x) =
1√

n!Γ (n + α + 1)
xα/2e−x/2Lα

n(x) ,

where n = 0, 1, ...; α = 0,±1,±2... and Lα
n(x) are Laguerre polynomials:

Lα
n(x) = (−1)nx−αex d

dxn
(xn+αe−x) .

The Laguerre functions ψα
n(x) can be calculated using the following recurrence

relations:

ψα
n+1(x) =

(x− α− 2n− 1√
(n + 1)(n + α + 1)

ψα
n(x)−

√
n(n + α)

(n + 1)(n + α + 1)
ψα

n−1(x) , n = 0, 1, ...,

ψα
0 (x) =

1√
Γ (α + 1)

xα/2e−x/2/; , ψα
−1(x) ≡ 0 .

These functions Ψα
n (x), called Gauss-Laguerre circular harmonic functions

(CHFs), are referenced by integers n (referred by radial order) and α (referred
by angular order). The real parts of Ψα

n (x) (n = 0, 1, ..., 4;α = 1, 2, ..., 5) are
illustrated in Fig. 1.

The Gauss-Laguerre CHFs are self-steerable, i.e. they can be rotated by
the angle θ using multiplication by the factor eiαθ. They also keep their shape
invariant under Fourier transformation. And they are suitable for multiscale and
multicomponent image analysis [6], [9].

Let us consider an observed image I(x, y) defined on the real plane R2. Due
to the orthogonality of Ψα

n family the image I(x, y) can be expanded in the
analysis point x0, y0 for fixed σ in Cartesian system as follows:

I(x0, y0) =
∞∑

α=−∞

∞∑
n=0

gα,n(x0, y0;σ)Ψα
n (ρ, ω; σ) ,
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Fig. 1. The real part of Ψα
n (n = 0, 1, ..., 4; α = 1, 2, ..., 5).

where

gα,n(x0, y0;σ) =

∞∫

−∞

∞∫

−∞
I(x0, y0)Ψα

n (ρ, ω; σ)dxdy ,

and
ρ =

√
(x− x0)2 + (y − y0)2, ω = arctan(

y − y0

x− x0
) .

Let us consider the keypoints detection algorithm introduced in [6]. Let σ be
the scale parameter and σ ∈ [2−smax , 2smax ] discretized in (2smax + 1) octaves
where each octave contains Ns uniformly sampled scales. So the set of scales is
defined as {σj}, where j = 0, 1, ..., 2Ns(2smax + 1)− 1. Taking into account the
Gauss-Laguerre CHFs property of being detectors for some image features (like
edges, forks, crosses etc.), n = 0, α = 3, 4 that corresponds to forks and crosses
are considered. The set of 2Ns(2smax + 1) energy maps is defined as:

S(x, y;σ) = |g3,0(x, y; σ)|2 + |g4,0(x, y; σ)|2, σ ∈ {σj} ,

referred as image scalogram. The scalogram is inspected by 3D sliding window
(5 x 5 x 3). The keypoints candidates K = (x, y;σ) are defined as the scalogram
local maxima within the window. Here (x, y) is the keypoint coordinate and σ
is the keypoint reference scale. So the image keypoints set is {K}. This set is
reduced by rejecting those keypoints K which have the same position (x, y) for
more than two reference scales. And, finally, the keypoints K with energy value
S(x, y; σ) less than a selected threshold are omitted:

S(x, y;σ) < T ·max
x,y

(S(x, y;σ)) . (1)
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2.2 Gauss-Laguerre Keypoints Descriptors

The Gauss-Laguerre keypoints descriptors construction algorithm was first pro-
posed in [6]. Each keypoint K = (x, y;σ) is associated to a local descriptor
χ = {χ(n, α, j)}. This is a complex-valued vector consisted of local image pro-
jections to a set of Gauss-Laguerre CHFs Ψα

n at 2jmax scales neighbor to the
keypoint K reference scale σ. The χ elements are defined as:

χ(n, α, j) =
gα,n(x, y; σj) · e−iαθj

‖gα,n(x, y; σj) · e−iαθj‖ ,

n = 0, ..., nmax , α = 1, ..., αmax , j = −jmax, ..., jmax ,

where σj is the j-th scale following σ if j > 0, or preceding σ if j < 0 in
the discretized scale space. The normalization makes descriptor invariant to the
contrast changes. The phase shift e−iαθj is used to make the descriptors invariant
to the keypoint pattern orientation, where

θj = arg(g1,0(x, y;σj) .

The matching performance of this technique was demonstrated in [6] in com-
parison with SIFT algorithm. It was found in [6] that Gauss-Laguerre keypoints
extraction method matching results overcome SIFT algorithm results in the
case of rotation, scale and translation transformation of images. Nevertheless
the computational cost of the algorithm is high.

2.3 Descriptors Computation using 2D Hermite Functions
Expansion

The 2D Hermite functions Φm,n(x, y;σ) form the complete orthonormal system
in L2 space and can be defined as:

Φm,n(x, y; σ) =
1
σ

φm

(x

σ

)
φn

( y

σ

)
, φn(x) =

(−1)ne−
x2
2√

2nn!
√

π
·Hn(x) , (2)

where n = 0, 1, 2... and Hn(x) are Hermite polynomials:

Hn(x) = (−1)nex2 d

dxn
(e−x2

) .

The Hermite functions φn(x) can be calculated using the following recurrence
relations:

φn(x) = x

√
2
n

φn−1(x)−
√

n− 1
n

φn−2(x) , n = 2, 3, ...,

φ0(x) =
1
4
√

π
e−

x2
2 , φ1(x) =

√
2x

4
√

π
e−

x2
2 .
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The 2D Hermite image I(x, y) expansion in the analysis point x0, y0 for fixed σ
can be defined as:

I(x0, y0) =
∞∑

m=0

∞∑
n=0

hm,n(x0, y0; σ)Φm,n(x, y; σ) ,

where

hm,n(x0, y0; σ) =

∞∫

−∞

∞∫

−∞
I(x0 + x, y0 + y)Φm,n(x, y; σ)dxdy . (3)

As one can see from (2), Φm,n(x, y; σ) functions are Cartesian separable, so the
computation of (3) can be performed as follows:

hm,n(x0, y0; σ) =

∞∫

−∞
I(x0 + x, y)φm(

x

σ
)dx , (4)

for every fixed y and after that

hm,n(x0, y0;σ) =
1
σ

∞∫

−∞
hm,n(x0, y0 + y;σ)φn(

y

σ
)dy . (5)

The coefficients of the 2D Hermite and Gauss Laguerre CHFs expansions are
block-wise linearly related [10], [11] (the example of connection between Gauss-
Laguerre circular harmonic functions and 2D Hermite functions is illustrated in
Fig. 2). So the corresponding coefficients gα,n and hm,n of image expansion to
the sets of these functions are connected with the same relation.

Using the separability of Φm,n functions and interconnection between Φm,n

and Ψα
n functions the number of operations for gα,n computation can be reduced

up to several times.
To suppress the descriptor changes due to the brightness changes we intro-

duce the following step. Before expanding the image in keypoint neighborhood
into the set of Gauss-Laguerre CHFs the average value of keypoints boundary
pixels intensity is subtracted from keypoint neighborhood image intensity values.

Further acceleration can be achieved using fast Hermite projection method
to compute coefficients hm,n and hm,n in 1D expansions (4), (5).

3 Fast Hermite Projection Method

In common case 1D Hermite projection method is defined as:

f(x) =
∞∑

m=0

cmφm(x)
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Fig. 2. An example of relation between Gauss-Laguerre circular harmonic functions
and 2D Hermite functions

where φm(x) are 1D Hermite functions, cm are Hermite coefficients:

cm =

∞∫

−∞
f(x)φm(x)dx . (6)

Each coefficient in (6) can be rewritten through Hermite polynomials as
follows:

cm =
1

βm

∞∫

−∞
e−x2

(
f(x)e

x2
2

)
Hm(x)dx ,

where Hm(x) is Hermite polynomial, βm is Hermite normalization constant:

βm =
√

2mm!
√

π .

This integral can be approximated by Gauss-Hermite quadrature [13]:

cm =
1

βm

∞∫

−∞
e−x2

(
f(x)e

x2
2

)
Hm(x)dx ≈

≈ 1
βm

N∑

k=1

Ak

(
f(xk)e

x2
k
2

)
Hm(xk) ,

where xk – Hermite polynomials HN (x) zeros, Ak – associated weights:

Ak =
2N−1N !

√
π

N2H2
N−1(xk)

.
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Computation cost and precision loss of these associated weights increase with
the increase of N [12]. This problem can be solved by replacement of Hermite
polynomials by Hermite functions in (7) [12]. After simplification the following
formula can be obtained:

cm ≈ 1
N

N∑

k=1

µm
N−1(xk)f(xk) ,

where µm
N−1(xk) is an array of associated constants:

µm
N−1(xk) =

φm(xk)
φn

N−1(xk)
.

More details on fast Hermite projection method can be found in [12].
Keypoints descriptors elements computation can be even more accelerated

using fast Hermite projection method to calculate hm,n and hm,n in (4) and (5).
However fast Hermite Projection method is lossy. So this acceleration brings in
some error to the Gauss-Laguerre image expansion coefficients gα,n and as a
consequence keypoints descriptors elements.

4 Results

Proposed keypoints extraction algorithm has been tested on the images se-
lected from the dataset freely available on the web, which provides the im-
age and the relating homographies sequences (http://www.robots.ox.ac.uk/
~vgg/research/affine/).

Typical values of achieved acceleration of initial descriptor construction algo-
rithm are demonstrated in Table 1. The threshold T in keypoints detection (1)
was set for each image independently to get about 1000 keypoints per image.
The values of descriptors construction parameters were n = 5, α = 5, jmax = 2.
Fast Hermite projection method was applied for keypoints with reference scale
σ > 5. This value was chosen experimentally to get optimal balance between
acceleration and approximation errors.

Table 1. Method acceleration results

Image 2D Hermite Fast Hermite projection Overall
name separability acceleration method acceleration acceleration

boat1 3.77 1.42 5.36
boat2 3.80 1.45 5.50
boat3 3.82 1.39 5.31
graf1 1.44 3.22 4.67
graf2 1.49 3.25 4.85
graf3 1.49 3.37 5.02
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The complete comparison of computational cost of proposed acceleration of
Gauss-Laguerre descriptors construction algorithm and SIFT descriptors con-
struction algorithm [5] is not given in this paper due to the fact that cur-
rent implementation of Gauss-Laguerre keypoints descriptors construction al-
gorithm is not optimized. Current implementation of the Gauss-Laguerre al-
gorithm with the fast Hermite projection method acceleration is ∼ 10.5 times
slower than implementation of SIFT which is freely available on the web (http:
//www.robots.ox.ac.uk/~vgg/research/affine/).

The proposed method was compared in precision-recall [8] with SIFT key-
points descriptors construction algorithm. Descriptors were constructed for the
same set of keypoints [5] selected with Gauss-Laguerre keypoints detection al-
gorithm. Threshold T was identical for both pair images and its value was set
to get at least 1000 keypoints in both images. The values of Gauss-Laguerre
descriptors construction parameters were n = 5, α = 5, jmax = 2. Fast Hermite
projection method was applied for keypoints with reference scale σ > 5. Dif-
ferent recall values were obtained changing the nearest neighbor distance ratio
parameter in descriptors matching procedure proposed by Lowe [5].

Typical results are illustrated in Fig. 3, 4. The proposed method needs
additional enhancement and optimization. Nevertheless even preliminary inves-
tigation showed promising results.

In Fig. 3 the results for graf1-graf2 image pair are given. This pair corre-
sponds to points of view changing transformation. The obtained results show
that Gauss-Laguerre descriptors and fast modification of Gauss-Laguerre de-
scriptors perform better matching than SIFT descriptors for the same level of
recall. However SIFT descriptors allow to reach the higher level of recall.
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Fig. 3. Precision-Recall graph with different descriptors for graf1-graf2 image pair.
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In Fig. 4 the results for boat1-boat2 image pair are given. This pair corre-
sponds to rotation and zoom transformations. The obtained results show that
Gauss-Laguerre descriptors performs better matching than SIFT descriptors for
some levels of recall, but SIFT descriptors outperforms proposed descriptors
in the area of high values of recall. Hermite projection based Gauss-Laguerre
descriptors demonstrate less level of both recall and precision than SIFT and
Gauss-Laguerre descriptors.
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Fig. 4. Precision-Recall graph with different descriptors for boat1-boat2 image pair.

5 Conclusion

The efficient computation technique of Gauss-Laguerre keypoints descriptors
using both the interconnection between Laguerre-Gauss circular harmonic func-
tions and 2D Hermite functions and fast Hermite projection method have been
proposed. The preliminary test results look promising. Nevertheless the tests
showed that proposed descriptors are not fully invariant to brightness and con-
trast changes. Future work will include investigation in the field of brightness
and contrast invariance of the descriptors and further improvement of Gauss-
Laguerre keypoints detection algorithm.
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