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Abstract—A non-iterative method of image super-resolution
based on weighted median filtering with Gaussian weights
is proposed. Visual tests and basic edges metrics were used
to examine the method. It was shown that the weighted
median filtering reduces the errors caused by inaccurate motion
vectors.
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I. INTRODUCTION

Image resampling is one of the most important problems
in image processing. Despite the increase of the resolution
of modern camera sensors, this problem is still actual, for
example, for old low-resolution video data and it is very
important for surveillance applications.

Many image resampling algorithms use a priory infor-
mation. As an example, image self-similarity at different
resolutions is used in NEDI algorithm [1]. Nevertheless this
approach improves the image visual quality only if the a
priori information is true.

Super-resolution is an alternative method to obtain better
results. Here several images of an object with subpixel shifts
(see figure 1) are used to construct single high-resolution
image [2], [3]. Camera sensors have non-zero size, and the
observed pixel value is an approximation of image intensity
in a certain area. If the object motion and the approximation
function are known, then the information from all frames
can be used to construct a single high-resolution image.
The main problem of super-resolution is the requirement
of accurate motion estimation. In this work, we propose
a super-resolution method stable enough to the errors of
motion vectors estimation.

II. MATHEMATICAL MODEL

The super-resolution task can be posed as an inverse
problem. The corresponding direct problem includes a set of
the downsampling procedures. It produces the low-resolution
images uk after motion transformation and downscaling
from the high-resolution image z as:

Akz = uk, k = 1, 2, ..., N.

The operator Ak in the general case is represented as
Ak = DHcamFkHatmz + n [4], where Hatm is the
atmosphere blur, Fk is the motion operator, Hcam is the
camera lens blur, D is a downscaling operator, n is a noise.

Figure 1. The correspondence between pixels of low-resolution images
(top row) and pixels of high-resolution image (bottom row).

The atmosphere and camera lens blurs are modeled by a
single Gauss filter H , and the system of equations takes the
form

Akz = DFkHz = uk, k = 1, 2, ..., N. (1)

Motion estimation algorithms [5], [6] are used to calcu-
late motion operators Fk. Many of them use optical flow
method for accurate motion estimation [5]. Nevertheless the
inaccuracy of the motion estimation remains very important
in super-resolution and it is necessary to reduce its influence
on the super-resolution result.

The super-resolution task described by the inverse prob-
lem for the system of equations (1) is an ill-posed prob-
lem. Iterative regularization methods based on Tikhonov
regularization [7] are used to make this problem well-
posed, but these methods are time consuming. Fast super-
resolution uses non-iterative methods. For example, in [8]
the authors calculate the average sum of upsampled and
motion compensated low-resolution images zH = Hz and
then sharpen the result using z = H−1zH transformation.
The idea of the proposed super-resolution method is close
to this method but weighted median filtering with Gaussian
weights is used.

III. PROBLEM DEFINITION

We consider the super-resolution problem (1) with z and
uk defined on discrete sets {(i, j) : i, j ∈ Z}. The motion
transformation operator Fk defines a set of correspondences



between the coordinates of points of source image and points
of motion transformed image:

Fkz(i, j) = z(x̃k
i,j , ỹ

k
i,j).

Operator D performs downscaling:

Dz(x, y) = z(sx, sy),

where s is a downscaling factor, and the operator DFk has
the form

DFkz(x, y) = z(x̃k
si,sj , ỹ

k
si,sj).

Using notation (xk
i,j , y

k
i,j) for (x̃k

si,sj , ỹ
k
si,sj), the operator

Akz = DFk(Hz) can be written as

Akz(i, j) = DFk(Hz)(i, j) = (Hz)(xk
i,j , y

k
i,j),

and the system of equations (1) takes the form

(Hz)(xk
i,j , y

k
i,j) = uk

i,j .

By omitting multi-dimensional indexing we compose
several upsampled and motion transformed low-resolution
images into a single image and rewrite (xk

i,j , y
k
i,j , u

k
i,j)

as (xn, yn, wn). Finally we obtain the following super-
resolution problem statement: to find the high-resolution
image (Hz) with the known values wn in the given points
(xn, yn) (see figure 2):

(Hz)(xn, yn) = wn. (2)

 

Figure 2. The illustration for super-resolution problem statement (2). Pixels
of the low-resolution images are shown as �,© and4. Pixels of the high-
resolution image are shown as •.

IV. PROBLEM SOLUTION

Even small errors in motion estimation result in serious
degradation of the reconstructed image. If a super-resolution
algorithm does not take into account the inaccuracy of
motion vectors, it gives unsatisfactory results. Therefore in-
stead of constructing the high-resolution image (Hz) which
satisfies the equation (2) in every point (xn, yn), we use the
following algorithm:

For every pixel (i, j) of the high-resolution image (Hz)
we take all points (xn, yn) from a small neighborhood of
(i, j) like shown in figure 2 and perform an averaging of
these values.

A simple and fast averaging method is based on Gaussian
filtering [8]:

(Hz)(i, j) =
∑

n wne
− (xn−i)2+(yn−j)2

2σ2∑
n e
− (xn−i)2+(yn−j)2

2σ2

, (3)

where radius σ is chosen experimentally in accordance to
the scale factor and accuracy of the motion vectors.

Gaussian averaging results in image blur. A robust ap-
proach based on median filtering was suggested in [9]. It
upsamples the low-resolution images and combining the
upsampled images using median averaging.

An adaptation of the median averaging to construct (Hz)
is presented in [10]. It applies the median averaging to the
values of all points in the neighborhood of the target pixel:

(Hz)(i, j) =

= med(wn : (xn − i)2 + (yn − j)2 < R2). (4)

Median averaging produces sharp edges but it does not
use the spatial distribution of points (xn, yn). To take the
benefits of both Gauss averaging (3) and median averaging
(4), we propose a combined method based on weighted
median averaging. In weighted median wmed(wn, cn), every
value wn has a weight cn. We choose the weights cn as in
the Gauss averaging:

cn = exp(− (xn − i)2 + (yn − j)2

2σ2
).

If the weights cn are natural numbers, we calculate the
weighted median as median average with wn taken cn times.
To find the result of the median averaging wmed(wn, cn)
in the general case, the pairs (wn, cn) are sorted in the
ascending order of wn. Next, we find the value m which
satisfies the conditions

m−1∑
k=1

ck ≤ S/2,
m∑

k=1

ck > S/2, S =
∑

k

ck,

and take the value wm as the result of the weighted median
averaging.

This process is illustrated in figure 3. We represent every
pair (wn, cn) as a rectangle with the width cn and fixed
height. Next we construct a long rectangle with width S by
connecting these rectangles in the ascending order of wn.
Finally we take the value wm of the rectangle in the middle
of the constructed rectangle as the result of the weighted
median.

The obtained result is the approximation of the blurred
image (Hz). But actually the proposed method produces
sharp images. This is caused by the behavior of the median
filtering. If we increase the radius of the median filtering then



Figure 3. Weighted median averaging procedure.

we do not increase the image blur of the resulting image and
the resulting image tends to be piece-wise flat. Therefore we
not apply deblur algorithms to the result and take the result
of the weighted median averaging as the result of super-
resolution.

V. RESULTS

To test the results of the proposed method we applied ran-
dom shifts to reference high-resolution images, and the ob-
tained images were downsampled. Then the high-resolution
images were reconstructed from these low-resolution images
by the super-resolution algorithm and compared with the
reference images. To test the stability of the proposed
method to the motion vectors errors, we added noise to the
motion vectors. A random uniformly distributed value in
[−1, 1] range was added to every motion vector for a quarter
of the input images. A random value in [−0.25, 0.25] range
was added to motion vectors for other images.

The results for the proposed super-resolution method are
shown in figure 4. It can be seen that the proposed method
has better visual quality than of the method based on median
averaging and the method based on Gaussian averaging.
Median averaging produces noisy edges while Gaussian
averaging blurs the edges in the case of errors in motion
vectors estimation.

To measure numerically the quality of the result of the
super-resolution algorithm, we used edge adaptive metrics
from [11]. The metrics BEP (Basic Edges Points) cal-
culates the mean square error (MSE) in the points of sharp
and isolated edges — basic edges. The metrics BEN (Basic
Edges Neighborhood) calculates the MSE in the basic edges
neighborhood.

The weighted median averaging shows better BEN and
BEP than the Gaussian averaging, but the results are
contradictory in comparison to the median averaging. The
weighted median averaging gives better results than the
median averaging in edge areas (BEP areas), but is worse
in the areas near the edges (BEN areas). Nevertheless the
problem of edge reconstruction is usually more significant
than the reconstruction of non-edge areas in the case of
erroneous motion vectors. Thus we make a conclusion that
the weighted median averaging method shows better results
than the median averaging method or the Gaussian averaging
method.

The results can be improved by varying the Gauss radius
σ and the radius R for different pixels of the image. This
will be part of the future work.

VI. CONCLUSION

Non-iterative image super-resolution method based on the
weighted median averaging has been proposed. It was shown
that weighted median averaging reduces the errors caused
by inaccurate motion vectors. The work was supported by
RFBR grant 10-01-00535 and by grant of Human Capital
Foundation.
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Reference images.

Low-resolution images (shown 4 of 16).

BEP and BEN areas.
White areas are BEP areas, gray areas are
BEN areas, thin gray lines are the edges.

Example of estimated motion vectors (left image)
and corresponding erroneous motion vectors

(right image).

BEP = 55.34, BEP = 17.00,
BEN = 0.26 BEN = 5.36
The result of applying erroneous motion

vectors to an upsampled input image.

BEP = 35.0, BEP = 9.73,
BEN = 5.63 BEN = 4.47

Super-resolution using Gauss averaging (3).

BEP = 25.73, BEP = 9.08,
BEN = 0.22 BEN = 3.66

Super-resolution using median averaging (4).

BEP = 20.09, BEP = 6.89,
BEN = 0.30 BEN = 3.94

Super-resolution using
weighted median averaging.

Figure 4. The illustration of super-resolution methods for scale factor 2 and 16 initial low-resolution images. Parameter σ = 1.2.


