
SCALE-SPACE METHOD OF IMAGE RINGING ESTIMATION

Andrey V. Nasonov, Andrey S. Krylov

Lab. of Mathematical Methods of Image Processing, Faculty of Comp. Mathematics and Cybernetics
Moscow Lomonosov State University, e-mail: nasonov@cs.msu.ru , kryl@cs.msu.ru

ABSTRACT

Suppression of ringing effect is a challenging problem. It
is mainly caused by absence of effective methods of ringing
artifact detection. In this paper we introduce a ringing esti-
mation method based on scale-space analysis. The estimation
shows good results for low-pass filtered test images and in
adaptive image deringing.

Index Terms— Ringing estimation, total variation, scale
space, adaptive deringing

1. INTRODUCTION

Development of image enhancement methods is one of the
most important image processing tasks. Ringing effect (Gibbs
phenomenon) appears in images as oscillations near sharp
edges. It is a result of a cut-off of high-frequency informa-
tion. Ringing can appear as a result of image compression,
image upsampling and other applications. An example of this
effect can be seen in old video stored in analog format (Fig.1).

One of the main problems of image deringing is to detect
the presence of ringing effect and to estimate the necessary
ringing suppression level. But there is no algorithm which
estimates ringing level in the general case.

There are image ringing estimation algorithms to measure
ringing effect for a specific problem. In [1] wavelet decompo-
sition is used and ringing effect is measured for JPEG-2000
compression as a difference between correlations of neighbor
coefficients of different wavelet subbands. The problem of
image deringing after JPEG-2000 compression is also con-
sidered in [2], [3].

Some metrics were developed to control image deringing
as a postprocessing. Regularization parameter estimation for
image deringing using MAP approach is proposed in [4]. For
the problem of image deringing after resampling, regulariza-
tion parameter is estimated using information on the initial
low resolution image [5]. In [6], the ringing metrics is de-
fined as maximum of the differences between pixel values
of the reference image and the processed image in the edge
neighborhood. The size of this neighborhood is fixed a priori.
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Fig. 1. A video frame with a strong ringing effect.

In [7], the presence of ringing effect is detected by comparing
the directions of image gradients at different scales.

The work [8] does not introduce a ringing estimation
method, but it presents an algorithm to find regions where the
ringing effect is the most visible. It is based on luminance
masking and texture masking as typical for the human visual
system.

In this article, we suggest new general ringing estima-
tion algorithm based on total variation (TV) control. The TV
was first used in image enhancement by Rudin, Osher and
Fatemi [9] for image denoising. General relations between
TV and ringing effect can be found in [10].

2. ONE-DIMENSIONAL TOTAL VARIATION

In one-dimensional case, Total Variation functional is defined
as

TV (f) =
∫ b

a

|f ′(x)|dx.

In a discrete case a = x0 ≤ x1 ≤ . . . ≤ xn = b, it looks
as:

TV (f) =
n∑

i=1

|f(xi)− f(xi−1)|.

We also consider weighted TV (WTV) with weight func-
tion w(x):

TV (f, w) =
∫ b

a

|f ′(x)|w(x)dx.

In the discrete case it looks as

TV (f, w) =
n∑

i=1

|f(xi)− f(xi−1)|w
(

xi−1 + xi

2

)
.



3. RINGING ESTIMATION FOR
ONE-DIMENSIONAL EDGE

We consider the problem of ringing level estimation for step
edge with width d:

fd(x) =





0, x < −d/2,

x/d + 1/2, −d/2 ≤ x < d/2,

1, x ≥ d/2.

at the interval with the length À d. In the discrete case,
TV (fd) = 1 for any grid.

Ringing effect can be generated by ideal low-pass filter
which truncates high frequency data. We implement it using
sinc interpolation of the step edge f0(x) given at the discrete
set {xk}, xk = dk + d

2 with sampling period d:

fd(x) =
∑

k

f(xk)sinc
x− xk

d
, (1)

where sinc(x) = sin πx
πx . We call here the value d as ringing

half-period. It is an analog of step edge width for edges with
ringing effect.

Real edges are corrupted by noise, so this fact is to be
considered too. In this work, we analyze the case of additive
uniform noise fd,n(x) = fd(x) + ξn(x), fd,n(x) = fd(x) +
ξn(x), where ξn(x) is uniformly distributed random function
which values are in (−n/2, n/2) range. We consider n ≤ n0,
where n0 is the maximum noise value.

3.1. Edge width estimation

For further scale-space TV analysis, we need to make a defi-
nition of the edge width.

To find edge width for an arbitrary edge f(x), we approx-
imate it by the edge fd(x) (3). We seek for minimum f0

and maximum values f1 of f(x) in a neighborhood of the
edge center. For simplicity, we consider f0 = 0, f1 = 1.The
size of this neighborhood is chosen a priori and represents the
maximum considered edge width.

Next we find the coordinates of intersections of y = f(x)
with y0 = 1/4 and with y1 = 3/4, draw a line through these
points and find x0 and x1 as it is shown in Fig.2. In the case
of multiple intersections we take the average of intersection
points. We call the obtained value as the edge width.

To reduce the influence of ringing artifact and noise to the
edge width, we smooth the edge using Gauss filter with radius
3
4d, calculate the values f0 and f1 for the smoothed edge and
recalculate edge width using these values.

3.2. Scale-space TV analysis

We performed an experimental analysis of edge TV with dif-
ferent widths d at different scales σ. Real edges are not in-
finite. To take into account only several first ringing oscilla-
tions, we use weighted TV with Gaussian weight wαd(x) =
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Fig. 2. Edge width estimation illustration. For the shown
case, the estimated edge width is 4.3 pixels.

e
− x2

2(αd)2 , where α controls the number of considered ringing
oscillations. To find the differences between edges with ring-
ing effect and edges without it, we analyze the functional

TV (f, σ, wαd) = TV (f ∗Gσ, wαd), (2)

where f ∗ Gσ is a convolution of f with Gauss filter with
radius σ.

To design an algorithm to find the value σ1 that best
discriminates between edges with ringing artifact and edges
without ringing artifact for fixed d, fixed maximum noise
level n0 and given parameter α, the following analysis has
been performed:

A set of 5000 step edges without ringing effect fd,n (set
A) and 5000 edges with ringing effect fd,n (set B) with ran-
dom noise levels 0 ≤ n ≤ n0 for each edge was generated.
For every σ, the intervals of values of (2) were calculated for
both sets A and B. If these intervals do not intersect, σ can be
used for ringing detection. The intervals of values of function
(2) for d = 10, n0 = 0.1 and α = 3 are shown in Fig.3. It can
be seen that there is a set of σ (marked as yellow area) which
can be used to distinguish between sets A and B.

TV values of edges with ringing artifacts are greater than
TV values of edges without ringing effect. We calculated
minimal value of TV of edges with ringing artifact

g∗(d, σ) = min TV (fd,n, σ, wαd)

and maximal value of TV of edges without ringing artifact

g∗(d, σ) = min TV (fd,n, σ, wαd).

Next we found σ that corresponds to the maximal gap be-
tween g∗(d, σ) and g∗(d, σ):

σ1(d) = arg max
σ

(g∗(d, σ)− g∗(d, σ)) . (3)

The calculated values of σ1(d) for n0 = 0.1 and α = 3
for different d are shown in Fig.4.

The function σ1(d) is close to linear function, its random
fluctuations are caused by noise and we use the approximation

σ1(d) = m(α, n0)d.



Fig. 3. Scale-space TV analysis for noisy edges with width
d = 10, maximum noise level n0 = 0.1 and α = 3 (num-
ber of oscillations ∼ 3). Blue area is the range of values of
function (2) for edges with ringing effect fd,n. Red areas
is the range of values of (2) for edges without ringing effect
fd,n. Black area is the intersection between blue and red ar-
eas. Yellow area corresponds to possible σ which can be used
to separate red and blue areas.
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Fig. 4. The results of σ1 calculation (3) for n0 = 0.1 and
α = 3 for different d. Thin line is a linear approximation of
function σ1(d).

For α = 3 and n0 = 0.1, we use m(α, n0) = 0.19. For
α = 3, n0 = 0.2, m(α, n0) = 0.25. Experiments have shown
that m(α, n0) does not depend too much on α for reasonable
α values (α > 2).

This enables us to consider the value

R∗E(f, d) = TV (f,m(α, n0)d,wαd)

as edge ringing level. For the case of edges with an arbitrary
height, we perform a normalization. For σ = d, the values
g∗(σ) and g∗d(σ) were found close, so it is natural to divide the
value R∗E by TV (f, d, wαd). Ringing value takes the form:

RE(f, d) =
TV (f, m(α, n0)d,wαd)

TV (f, d, wαd)
.

To make a decision about the presence of ringing effect for
edge f with edge width d, we compare the calculated ringing

level RE(f, d) with precalculated threshold functions

G∗(d) = g∗(d,m(α, n0)d),
G∗(d) = g∗(d,m(α, n0)d).

If RE(f, d) ≤ G∗(d), we assume that the edge does
not have ringing artifact. If RE(f, d) ≥ G∗(d), we assume
that the edge has ringing artifact. In practice, signals are not
perfectly bandlimited and ringing effect is weakened. Thus
RE(f, d) can fall into (G∗(d), G∗(d)) interval. The decision
in this case needs additional analysis for each specific image
class. For example, for linearly interpolated images or for
video stored in analog format, we assume that ringing effect
is presented in this case.

The calculated threshold functions G∗(d) and G∗(d) for
n0 = 0.1 and α = 3 for different d are shown in Fig.5.
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Fig. 5. Thresholds G∗(d) and G∗(d) for n0 = 0.1 and α = 3.

4. RINGING ESTIMATION FOR
TWO-DIMENSIONAL IMAGES

We consider the problem of ringing estimation for two-
dimensional images with uniform ringing effect. It means
that cut-off frequency is constant and ringing half-period D
is the same for any edge normal cross-section. We apply the
following algorithm:

1. Perform edge detection and extract edge normal cross-
sections fk, k = 1, 2, . . . , N for strong isolated edges [11].

2. Estimate edge widths dk = d(fk) for all k and calculate
ringing half-period D. For real images, edge width is different
for different edges due to blur and noise. We treat dk as a
distribution and estimate D as the value of the highest density
of this distribution. To reject noise and blur outliers, we take
only edges where |dk/D − 1| ≤ 0.2.

3. For every edge we calculate its ringing level RE(fk, D),
and we define image ringing level RI as an average of all ob-
tained edge ringing levels.

4. At the last stage, we compare RI with the precalculated
ringing thresholds G∗(D) and G∗(D) and make the decision
about the presence of ringing artifact in the image.



5. RESULTS

The effectiveness of the proposed ringing estimation algo-
rithm was shown by image deringing applications.

1. Correspondence between the proposed ringing level
and existing image deringing algorithm. Ringing level was
calculated for the initial low-resolution image, for the image
resampled by regularization method [11] and for the resam-
pled image postprocessed by deringing method [5]. The re-
sults are given in Fig.6.

It shows that the proposed ringing estimation algorithm
can be used to control ringing level in image deringing appli-
cations.

Fig. 6. Ringing estimation for image deringing after resam-
pling [5]. Left image: source image upsampled by pixel
replication, RI = 1.05. Middle image: image interpolated
by regularization-based method with low regularization [12],
RI = 2.20. Right image: interpolated image postprocessed
by deringing after resampling [5], RI = 1.06.

2. Automatic image deringing for real video. The strength
of the deringing algorithm [5] was consecutive increased until
ringing level RI of the processed video frame was less than
the threshold G∗. A result is shown in Fig.7

Fig. 7. Automatic image deringing. Left image: original im-
age with ringing effect, RI = 1.44. Right image: the result
of automatic deringing with ringing level control, RI = 1.20.

6. CONCLUSION

Scale-space ringing level estimation for one-dimensional
functions and two-dimensional images was proposed. Very
promising results were achieved for deringing after resam-
pling and adaptive deringing using ringing level control in the
presence of noise.

Future work on the proposed ringing level estimation
method includes additional refinement of the ringing crite-
rion for different image classes and edge width estimation.
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