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ABSTRACT
In this paper, an edge-preserving nonlinear iterative

regularization-based image resampling method for a single
noise-free image is proposed. Several aspects of the resam-
pling algorithm are investigated: choice of discrepancy and
regularization norms, improvements of convergence speed
using edge-directional steepest-descent method and patch-
based details synthesis. A model of a downsampling operator
based on a camera observation model is considered.

Index Terms— Image interpolation, regularization, edge-
directional, details synthesis, super-resolution, resampling.

1. INTRODUCTION

Image interpolation (or resampling) is a well studied problem
in image processing. Despite of the fast increase of resolution
of modern image sensors, image interpolation remains impor-
tant for high-quality conversion of legacy formats, e.g. when
showing a standard-definition video on HDTV.

Linear interpolation methods are typically treating im-
ages as band-limited signals and separate 2D interpolation
into a set of 1D interpolation problems [1]. The interpolated
signal is constructed as a convolution of the sampled signal
with kernel functions, such as a box filter (“nearest neighbor
interpolation”), a triangular filter (“bilinear interpolation”), a
cubic spline, or a sinc filter. Failing to consider the structure
of the image, linear methods suffer from 3 common artifacts:
blur, jagged edges (aliasing), and ringing. The shape of the
interpolation kernel defines the balance between these 3 arti-
facts; cubic interpolation is a popular balanced choice.

Simplest nonlinear interpolation methods explicitly [2] or
implicitly [3] adapt the interpolation to the local image data
in order to prevent blurring across edges and encourage inter-
polation along the edge direction. Such methods are effective
in reduction of edge jaggedness.

A class of super-resolution methods [4] considers im-
age interpolation as the inverse problem Az = u, where z
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is the unknown high-resolution image, u is the known low-
resolution image, and A is the downscaling operator typically
consisting of a low-pass filtering followed by decimation.
This problem is ill-posed and is typically solved by iterative
methods with regularization [5].

Learning-based (or statistical) approaches to super-resolution
are mapping low-resolution image patches to the database of
high-resolution image patches trained on a set of images [6].

In this paper, we are studying some modifications of it-
erative regularization methods for resampling and propose a
new method combining iterative regularization-based resam-
pling with a patch-based details synthesis. Our details syn-
thesis algorithm is not based on learning, but instead exploits
a similarity of the image structure in different scales.

2. REGULARIZATION-BASED INTERPOLATION

We pose the image interpolation problem as the inverse
problem to the image downsampling problem. The inverse
problem is ill-posed. We are using a method derived from
Tikhonov regularization method [7] to solve this problem.

2.1. Image downsampling

To pose the image downsampling problem, we are using an
observation model. The size of a camera sensor is non-zero.
Every sensor averages the intensity of the observed continu-
ous image I(x, y). This averaging is represented by a point
spread function (PSF). The resulting intensity of the discrete
image z obtained by camera can be calculated as a convolu-
tion with the PSF followed by sampling. Every camera has
its own PSF. The observed image also suffers from a variety
of distortions such as camera lens blur, motion blur, sensor
noise. For simplicity, we represent all these effects by a sin-
gle Gaussian filter. Under these assumptions, we model the
obtained image as

z = I ∗Gσ, (1)

where Gσ is a Gaussian filter having radius σ. Usually, we
estimate Gauss radius σ as the pixel size multiplied by a value



in the range [0.4, 0.5]. Lower radius values result in aliasing,
higher values blur the image.

We have defined the observation model. Now we propose
a method of image downsampling by q times using the ob-
servation model. The problem of image downsampling is to
construct a low-resolution discrete image u for shrunk image
J(x, y) = I(qx, qy). We replace this problem with construct-
ing a discrete image v from the original image I using a cam-
era with q times bigger pixel size. The image v is calculated
as v = I ∗Gqσ .

We do not know the initial image I , but we know the im-
age z and the parameter σ (1). We calculate v from z as:

v = I ∗Gqσ = I ∗Gσ ∗G
σ
√

q2−1
= z ∗G

σ
√

q2−1
,

because Gσ1 ∗Gσ2 = G√
σ2
1+σ2

2
.

Finally, the downsampling process takes the form

u = Az = DHz, (2)

where H is the convolution with a Gaussian filter G
σ
√

q2−1
,

D is the decimation operator.

2.2. Inverse problem

The problem of image upsampling is an inverse problem to
the image downsampling problem (2). It consists in finding z
for known low-resolution image u:

z = A−1u = H−1D−1u (3)

2.3. Regularization

In the continuous case, the problem (3) is ill-posed, because
H−1 is unbounded and produces unstable solutions. In the
discrete case, the decimation operator D cannot be inverted,
while operator H−1 is ill-conditioned. To make the problem
well-posed, we are using the regularization method [5]:

zR = arg min
z

(‖Az − u‖n
n + αΩ[z]) (4)

Here the first term is called discrepancy, Ω[z] is the stabi-
lizer, α > 0 is the regularization coefficient, and the norm is
defined as

‖z‖n
n =

∑

i,j

|zi,j |n

Following [4], we are using a bilateral total variation
(BTV) functional as a stabilizer

Ω[z] =
∑

−p≤s,t≤p

γ|s|+|t|‖z − Ss
xSt

yz‖m
m,

where γ = 0.8, Ss
x and St

y are shift operators along x and y
axis by s and t pixels respectively, p is the BTV radius.

In this work, we analyze the results of image interpola-
tion for different discrepancy norms n, stabilizer norms m

Fig. 1. The reference high-resolution image.

and BTV radiuses p to find the parameters that provide better
edge preservation and overall image quality.

To estimate the quality of regularization-based image re-
sampling, several reference images were downsampled by a
certain factor. Then the downsampled images were interpo-
lated by the same factor and compared with the reference im-
ages using the PSNR metrics. The regularization parameter
α was chosen to maximize the PSNR. We used reference im-
ages with strong flat edges without textured areas like Fig.1.
In this case, PSNR can be used as a reasonable measure of
image quality. Additional experiments included photographic
images.

We have analyzed scale factors 2 and 4 in our experi-
ments. The considered norms for the discrepancy term were
n = 1, 2 and 3. When using n > 3, the interpolated image
contains a lot of impulse noise. Norms m = 1 and 2 were
used in the stabilizer. The PSNR values for the test image
from Fig.1 are shown in Table 1.

Norms Upsampling by 2 Upsampling by 4
n m p = 1 p = 2 p = 1 p = 2 p = 3
1 1 30.95 30.37 20.71 21.46 21.48
2 1 31.81 31.30 20.82 21.67 21.76
3 1 28.78 27.28 19.56 19.78 19.65
1 2 26.30 25.37 19.33 19.22 17.64
2 2 26.54 25.21 19.43 18.58 17.24
3 2 25.24 24.04 18.52 18.52 18.43

Table 1. PSNR values (dB) for different discrepancy norms
n, stabilizer norms m, BTV radiuses p and scale factors
(higher PSNR is better).

The best results are produced with n = 2, m = 1; this
correlates with the perceived image quality. Results for the
discrepancy norm n = 1 suffer from ringing artifacts. For
norms n = 2 and n = 3 the results are close, but the mini-
mization problem for the case n = 3 requires more iterations.
Use of the stabilizer norm m = 2 results in ringing artifacts
and edge blurring, while the norm m = 1 produces sharp
edges. The results for the upscaling factor 2 are shown in



Fig.2

n = 1, m = 1, PSNR=30.95 n = 1, m = 2, PSNR=26.30

n = 2, m = 1, PSNR=31.81 n = 2, m = 2, PSNR=26.54

edge-dir. descent, m = n = 1 edge-dir., details synth.
PSNR = 32.50 PSNR = 33.55

Fig. 2. The results of regularization-based image interpola-
tion (4) for different norms for the factor of 2.

Considering the results, we are making a conclusion that
optimal norms for edge preservation are n = 2, m = 1.

For the case of multi-frame super-resolution [4], the min-
imization problem (4) with the norms n = 1 and m = 1 was
used to perform a robust mean estimation.

The second part of the experiment was the analysis of in-
fluence of BTV radius p on the results of interpolation. The
higher the radius is, the wider is the smoothing area, and the
edges are expected to be less aliased. Due to high compu-
tational complexity for big p, we only analyzed the cases
p = 1, 2, 3.

For the factor of 2, the results are similar for all p, and the
value p = 1 can be used.

For the factor of 4, for p = 2 the method gives better
results than for p = 1. For p = 3, the results do not dif-
fer significantly from the case p = 2, so the value p = 2 is

optimal.

2.4. Minimization

To minimize the regularization functional (4) for n = 2 and
m = 1, we are using the subgradient method [8] with a fixed
step size:

zk+1 = zk − βk

(
2HT DT (DHz − u) +

α ·
∑

−p≤s,t≤p

γ|s|+|t|(I − S−s
x S−t

y )sign(zk − Ss
xSt

yzk)
)

(5)

Here sign(z) is a per-element sign function, DT is the
zero-padding upsampling operation, and HT = H due to the
filter symmetry.

The initial image z0 is approximated using non-iterative
interpolation methods. The choice of step values βk is dis-
cussed in [5].

3. IMPROVEMENTS OF CONVERGENCE SPEED

Minimization of the functional (4) is an iterative process that
rarely converges exactly to the global minimum. And even if
the global minimum is achieved, there can be a substantial
difference between the solution and the ground-truth high-
resolution image. In order to minimize this difference, we
suggest two heuristic methods: “edge-directional” modifica-
tion of the steepest descent method, and patch-based details
synthesis.

3.1. Edge-directional steepest descent method

Each iteration of the steepest descent method (5) consists of
the following steps:

1. The current solution is downscaled: DHzk,
2. This downscaled image is compared against the known

low-resolution image: sign(DHzk − u) (for n = 1), or
(DHzk − u) (for n = 2),

3. The resulting difference image is upscaled:
HT DT sign(DHzk−u) (for n = 1), or 2HT DT (DHzk−u)
(for n = 2), and subtracted from the current approximation
zn,

4. The regularization term is subtracted from the current
approximation.

At the 3rd step of each iteration the difference image is
upsampled by zero-padding DT and filtered by the low-pass
filter HT . This filter is linear and space-invariant. Our heuris-
tics modifies this stage of the iterative process to enhance
edge-sensitivity of the low-pass filter.

The filter HT is replaced with a locally adaptive interpo-
lation that prevents blurring of the upsampled correction im-
age DT sign(DHzk − u) across edges. Interpolation weights
at each point are calculated by evaluating several directional



derivatives of the image z0. So, the operator HT DT is re-
placed with some well-known non-iterative edge-directional
interpolation method.

Additionally, the initial approximation z0 is also con-
structed by some edge-directional interpolation of the image
u, such as NEDI [3]. In Fig.3, curves 5 and 6 demonstrate
the improvement of PSNR between the upscaled image and
the ground-truth high-resolution image as the result of the
described heuristics.

Fig. 3. Improvement of PSNR after proposed heuristics (ED
— edge directional upsampling in steepest descent method,
DS — patch-based details synthesis).

3.2. Patch-based details synthesis

A number of existing learning-based methods exist for image
upsampling [6]. They are adding a missing high-frequency
content to the upscaled image by searching the database of
patches, which is obtained from the training set of images.

We propose a similar algorithm, but without the learning
stage. It exploits the property of self-similarity of many image
features across different scales. As with other methods, we
are breaking the image zk into a set of overlapping N × N
patches. For each patch, we are looking for its closest match
in the image u, without any scaling. The match is searched in
a small surrounding area: ±K pixels.

The best found match is separated into high frequencies
and low frequencies by a 3× 3-pixel high-pass filter. The ob-
tained high frequencies of u are mixed into the corresponding
patch of zk using a Hann weighting window that attenuates
inter-patch discontinuities. The mixing gain is inversely pro-
portional to the patch matching error. This ensures that only
well-matched patches find their way into the resulting image.

The described details synthesis algorithm can be applied
once or several times throughout the process of iterations (5).
Since this algorithm may create some artifacts, we are always

doing several minimization iterations after applying the de-
tails synthesis. This “corrects” the resulting image by mini-
mizing the discrepancy term.

In our implementation, the block size is set to N = 4,
and the search radius is set to K = 7. The amount of block
overlap is the quality/complexity tradeoff.

In Fig.3, curve 7 shows that the use of this details synthe-
sis algorithm improves the PSNR of the resulting image with
regard to the ground-truth high-resolution image.

4. CONCLUSION

In this work, we have proposed the edge preserving nonlinear
regularization-based iterative image resampling method with
improvements of convergence speed. Choice of the regular-
ization method parameters depends on the image comparison
metrics. For the test images used in the paper, the PSNR met-
rics correlates well with the perceived image quality. Nev-
ertheless, the choice of optimal parameters for the adaptive
regularization method in a general case is still a challenging
problem and requires additional investigation.

We have prepared a web-page with additional sample im-
ages and a demo software implementing the described inter-
polation methods: http://imaging.cs.msu.ru/reg/.
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